Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry
Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2021-12, Vol.55 (23), p.16224-16235 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16235 |
---|---|
container_issue | 23 |
container_start_page | 16224 |
container_title | Environmental science & technology |
container_volume | 55 |
creator | Possinger, Angela R Weiglein, Tyler L Bowman, Maggie M Gallo, Adrian C Hatten, Jeff A Heckman, Katherine A Matosziuk, Lauren M Nave, Lucas E SanClements, Michael D Swanston, Christopher W Strahm, Brian D |
description | Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change. |
doi_str_mv | 10.1021/acs.est.1c04909 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609422513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609422513</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqUwsyFLjCjt9SOJPVZReUhFDAWJzbIdW6Rqm2InQ_89Li3dmKwrf-fcew5CtwTGBCiZaBvHLnZjYoFLkGdoSHIKWS5yco6GAIRlkhWfA3QV4xIAKANxiQaMC8IKWQzRtFo1a905PPPe2S7idoMXvYlts8KVDiaN8zZG_OrqJmE1Nju8-P38cusmdmF3jS68XkV3c3xH6ONx9l49Z_O3p5dqOs80B9plBTelkUXOJfNeAPXOWA2GUcutFk4a7soUiRJTClGWTtR5rS2jWqaTQRs2QvcH321ov_sUWi3bPmzSSkULkJzSnLBETQ6UDens4LzahhQw7BQBta9MpcrUXn2sLCnujr69Wbv6xP91lICHA7BXnnb-Z_cDPcJ1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609422513</pqid></control><display><type>article</type><title>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Possinger, Angela R ; Weiglein, Tyler L ; Bowman, Maggie M ; Gallo, Adrian C ; Hatten, Jeff A ; Heckman, Katherine A ; Matosziuk, Lauren M ; Nave, Lucas E ; SanClements, Michael D ; Swanston, Christopher W ; Strahm, Brian D</creator><creatorcontrib>Possinger, Angela R ; Weiglein, Tyler L ; Bowman, Maggie M ; Gallo, Adrian C ; Hatten, Jeff A ; Heckman, Katherine A ; Matosziuk, Lauren M ; Nave, Lucas E ; SanClements, Michael D ; Swanston, Christopher W ; Strahm, Brian D</creatorcontrib><description>Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c04909</identifier><identifier>PMID: 34813696</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biogeochemical Cycling ; Carbon ; Cations ; Chemical properties ; Climate Change ; Climate effects ; Climate prediction ; Decomposition ; High temperature ; Metals ; Moisture ; Organic carbon ; Organic soils ; Sensitivity ; Soil ; Soil chemistry ; Soil properties ; Soil temperature ; Soils ; Subsoils ; Temperature ; Terrestrial environments</subject><ispartof>Environmental science & technology, 2021-12, Vol.55 (23), p.16224-16235</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Dec 7, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</citedby><cites>FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</cites><orcidid>0000-0003-2518-0979 ; 0000-0001-9485-6886 ; 0000-0003-0656-7633 ; 0000-0002-1685-6351 ; 0000-0002-1962-3561 ; 0000-0002-4025-2304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c04909$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c04909$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34813696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Possinger, Angela R</creatorcontrib><creatorcontrib>Weiglein, Tyler L</creatorcontrib><creatorcontrib>Bowman, Maggie M</creatorcontrib><creatorcontrib>Gallo, Adrian C</creatorcontrib><creatorcontrib>Hatten, Jeff A</creatorcontrib><creatorcontrib>Heckman, Katherine A</creatorcontrib><creatorcontrib>Matosziuk, Lauren M</creatorcontrib><creatorcontrib>Nave, Lucas E</creatorcontrib><creatorcontrib>SanClements, Michael D</creatorcontrib><creatorcontrib>Swanston, Christopher W</creatorcontrib><creatorcontrib>Strahm, Brian D</creatorcontrib><title>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.</description><subject>Biogeochemical Cycling</subject><subject>Carbon</subject><subject>Cations</subject><subject>Chemical properties</subject><subject>Climate Change</subject><subject>Climate effects</subject><subject>Climate prediction</subject><subject>Decomposition</subject><subject>High temperature</subject><subject>Metals</subject><subject>Moisture</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Sensitivity</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>Soil properties</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Subsoils</subject><subject>Temperature</subject><subject>Terrestrial environments</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EoqUwsyFLjCjt9SOJPVZReUhFDAWJzbIdW6Rqm2InQ_89Li3dmKwrf-fcew5CtwTGBCiZaBvHLnZjYoFLkGdoSHIKWS5yco6GAIRlkhWfA3QV4xIAKANxiQaMC8IKWQzRtFo1a905PPPe2S7idoMXvYlts8KVDiaN8zZG_OrqJmE1Nju8-P38cusmdmF3jS68XkV3c3xH6ONx9l49Z_O3p5dqOs80B9plBTelkUXOJfNeAPXOWA2GUcutFk4a7soUiRJTClGWTtR5rS2jWqaTQRs2QvcH321ov_sUWi3bPmzSSkULkJzSnLBETQ6UDens4LzahhQw7BQBta9MpcrUXn2sLCnujr69Wbv6xP91lICHA7BXnnb-Z_cDPcJ1nA</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Possinger, Angela R</creator><creator>Weiglein, Tyler L</creator><creator>Bowman, Maggie M</creator><creator>Gallo, Adrian C</creator><creator>Hatten, Jeff A</creator><creator>Heckman, Katherine A</creator><creator>Matosziuk, Lauren M</creator><creator>Nave, Lucas E</creator><creator>SanClements, Michael D</creator><creator>Swanston, Christopher W</creator><creator>Strahm, Brian D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2518-0979</orcidid><orcidid>https://orcid.org/0000-0001-9485-6886</orcidid><orcidid>https://orcid.org/0000-0003-0656-7633</orcidid><orcidid>https://orcid.org/0000-0002-1685-6351</orcidid><orcidid>https://orcid.org/0000-0002-1962-3561</orcidid><orcidid>https://orcid.org/0000-0002-4025-2304</orcidid></search><sort><creationdate>20211207</creationdate><title>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</title><author>Possinger, Angela R ; Weiglein, Tyler L ; Bowman, Maggie M ; Gallo, Adrian C ; Hatten, Jeff A ; Heckman, Katherine A ; Matosziuk, Lauren M ; Nave, Lucas E ; SanClements, Michael D ; Swanston, Christopher W ; Strahm, Brian D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biogeochemical Cycling</topic><topic>Carbon</topic><topic>Cations</topic><topic>Chemical properties</topic><topic>Climate Change</topic><topic>Climate effects</topic><topic>Climate prediction</topic><topic>Decomposition</topic><topic>High temperature</topic><topic>Metals</topic><topic>Moisture</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Sensitivity</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>Soil properties</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Subsoils</topic><topic>Temperature</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Possinger, Angela R</creatorcontrib><creatorcontrib>Weiglein, Tyler L</creatorcontrib><creatorcontrib>Bowman, Maggie M</creatorcontrib><creatorcontrib>Gallo, Adrian C</creatorcontrib><creatorcontrib>Hatten, Jeff A</creatorcontrib><creatorcontrib>Heckman, Katherine A</creatorcontrib><creatorcontrib>Matosziuk, Lauren M</creatorcontrib><creatorcontrib>Nave, Lucas E</creatorcontrib><creatorcontrib>SanClements, Michael D</creatorcontrib><creatorcontrib>Swanston, Christopher W</creatorcontrib><creatorcontrib>Strahm, Brian D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Possinger, Angela R</au><au>Weiglein, Tyler L</au><au>Bowman, Maggie M</au><au>Gallo, Adrian C</au><au>Hatten, Jeff A</au><au>Heckman, Katherine A</au><au>Matosziuk, Lauren M</au><au>Nave, Lucas E</au><au>SanClements, Michael D</au><au>Swanston, Christopher W</au><au>Strahm, Brian D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>55</volume><issue>23</issue><spage>16224</spage><epage>16235</epage><pages>16224-16235</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34813696</pmid><doi>10.1021/acs.est.1c04909</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2518-0979</orcidid><orcidid>https://orcid.org/0000-0001-9485-6886</orcidid><orcidid>https://orcid.org/0000-0003-0656-7633</orcidid><orcidid>https://orcid.org/0000-0002-1685-6351</orcidid><orcidid>https://orcid.org/0000-0002-1962-3561</orcidid><orcidid>https://orcid.org/0000-0002-4025-2304</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2021-12, Vol.55 (23), p.16224-16235 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_journals_2609422513 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biogeochemical Cycling Carbon Cations Chemical properties Climate Change Climate effects Climate prediction Decomposition High temperature Metals Moisture Organic carbon Organic soils Sensitivity Soil Soil chemistry Soil properties Soil temperature Soils Subsoils Temperature Terrestrial environments |
title | Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20Effects%20on%20Subsoil%20Carbon%20Loss%20Mediated%20by%20Soil%20Chemistry&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Possinger,%20Angela%20R&rft.date=2021-12-07&rft.volume=55&rft.issue=23&rft.spage=16224&rft.epage=16235&rft.pages=16224-16235&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c04909&rft_dat=%3Cproquest_cross%3E2609422513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609422513&rft_id=info:pmid/34813696&rfr_iscdi=true |