Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry

Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-12, Vol.55 (23), p.16224-16235
Hauptverfasser: Possinger, Angela R, Weiglein, Tyler L, Bowman, Maggie M, Gallo, Adrian C, Hatten, Jeff A, Heckman, Katherine A, Matosziuk, Lauren M, Nave, Lucas E, SanClements, Michael D, Swanston, Christopher W, Strahm, Brian D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16235
container_issue 23
container_start_page 16224
container_title Environmental science & technology
container_volume 55
creator Possinger, Angela R
Weiglein, Tyler L
Bowman, Maggie M
Gallo, Adrian C
Hatten, Jeff A
Heckman, Katherine A
Matosziuk, Lauren M
Nave, Lucas E
SanClements, Michael D
Swanston, Christopher W
Strahm, Brian D
description Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.
doi_str_mv 10.1021/acs.est.1c04909
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609422513</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609422513</sourcerecordid><originalsourceid>FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EoqUwsyFLjCjt9SOJPVZReUhFDAWJzbIdW6Rqm2InQ_89Li3dmKwrf-fcew5CtwTGBCiZaBvHLnZjYoFLkGdoSHIKWS5yco6GAIRlkhWfA3QV4xIAKANxiQaMC8IKWQzRtFo1a905PPPe2S7idoMXvYlts8KVDiaN8zZG_OrqJmE1Nju8-P38cusmdmF3jS68XkV3c3xH6ONx9l49Z_O3p5dqOs80B9plBTelkUXOJfNeAPXOWA2GUcutFk4a7soUiRJTClGWTtR5rS2jWqaTQRs2QvcH321ov_sUWi3bPmzSSkULkJzSnLBETQ6UDens4LzahhQw7BQBta9MpcrUXn2sLCnujr69Wbv6xP91lICHA7BXnnb-Z_cDPcJ1nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609422513</pqid></control><display><type>article</type><title>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Possinger, Angela R ; Weiglein, Tyler L ; Bowman, Maggie M ; Gallo, Adrian C ; Hatten, Jeff A ; Heckman, Katherine A ; Matosziuk, Lauren M ; Nave, Lucas E ; SanClements, Michael D ; Swanston, Christopher W ; Strahm, Brian D</creator><creatorcontrib>Possinger, Angela R ; Weiglein, Tyler L ; Bowman, Maggie M ; Gallo, Adrian C ; Hatten, Jeff A ; Heckman, Katherine A ; Matosziuk, Lauren M ; Nave, Lucas E ; SanClements, Michael D ; Swanston, Christopher W ; Strahm, Brian D</creatorcontrib><description>Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.1c04909</identifier><identifier>PMID: 34813696</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biogeochemical Cycling ; Carbon ; Cations ; Chemical properties ; Climate Change ; Climate effects ; Climate prediction ; Decomposition ; High temperature ; Metals ; Moisture ; Organic carbon ; Organic soils ; Sensitivity ; Soil ; Soil chemistry ; Soil properties ; Soil temperature ; Soils ; Subsoils ; Temperature ; Terrestrial environments</subject><ispartof>Environmental science &amp; technology, 2021-12, Vol.55 (23), p.16224-16235</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Dec 7, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</citedby><cites>FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</cites><orcidid>0000-0003-2518-0979 ; 0000-0001-9485-6886 ; 0000-0003-0656-7633 ; 0000-0002-1685-6351 ; 0000-0002-1962-3561 ; 0000-0002-4025-2304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.1c04909$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.1c04909$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34813696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Possinger, Angela R</creatorcontrib><creatorcontrib>Weiglein, Tyler L</creatorcontrib><creatorcontrib>Bowman, Maggie M</creatorcontrib><creatorcontrib>Gallo, Adrian C</creatorcontrib><creatorcontrib>Hatten, Jeff A</creatorcontrib><creatorcontrib>Heckman, Katherine A</creatorcontrib><creatorcontrib>Matosziuk, Lauren M</creatorcontrib><creatorcontrib>Nave, Lucas E</creatorcontrib><creatorcontrib>SanClements, Michael D</creatorcontrib><creatorcontrib>Swanston, Christopher W</creatorcontrib><creatorcontrib>Strahm, Brian D</creatorcontrib><title>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.</description><subject>Biogeochemical Cycling</subject><subject>Carbon</subject><subject>Cations</subject><subject>Chemical properties</subject><subject>Climate Change</subject><subject>Climate effects</subject><subject>Climate prediction</subject><subject>Decomposition</subject><subject>High temperature</subject><subject>Metals</subject><subject>Moisture</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Sensitivity</subject><subject>Soil</subject><subject>Soil chemistry</subject><subject>Soil properties</subject><subject>Soil temperature</subject><subject>Soils</subject><subject>Subsoils</subject><subject>Temperature</subject><subject>Terrestrial environments</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kDtPwzAUhS0EoqUwsyFLjCjt9SOJPVZReUhFDAWJzbIdW6Rqm2InQ_89Li3dmKwrf-fcew5CtwTGBCiZaBvHLnZjYoFLkGdoSHIKWS5yco6GAIRlkhWfA3QV4xIAKANxiQaMC8IKWQzRtFo1a905PPPe2S7idoMXvYlts8KVDiaN8zZG_OrqJmE1Nju8-P38cusmdmF3jS68XkV3c3xH6ONx9l49Z_O3p5dqOs80B9plBTelkUXOJfNeAPXOWA2GUcutFk4a7soUiRJTClGWTtR5rS2jWqaTQRs2QvcH321ov_sUWi3bPmzSSkULkJzSnLBETQ6UDens4LzahhQw7BQBta9MpcrUXn2sLCnujr69Wbv6xP91lICHA7BXnnb-Z_cDPcJ1nA</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Possinger, Angela R</creator><creator>Weiglein, Tyler L</creator><creator>Bowman, Maggie M</creator><creator>Gallo, Adrian C</creator><creator>Hatten, Jeff A</creator><creator>Heckman, Katherine A</creator><creator>Matosziuk, Lauren M</creator><creator>Nave, Lucas E</creator><creator>SanClements, Michael D</creator><creator>Swanston, Christopher W</creator><creator>Strahm, Brian D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2518-0979</orcidid><orcidid>https://orcid.org/0000-0001-9485-6886</orcidid><orcidid>https://orcid.org/0000-0003-0656-7633</orcidid><orcidid>https://orcid.org/0000-0002-1685-6351</orcidid><orcidid>https://orcid.org/0000-0002-1962-3561</orcidid><orcidid>https://orcid.org/0000-0002-4025-2304</orcidid></search><sort><creationdate>20211207</creationdate><title>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</title><author>Possinger, Angela R ; Weiglein, Tyler L ; Bowman, Maggie M ; Gallo, Adrian C ; Hatten, Jeff A ; Heckman, Katherine A ; Matosziuk, Lauren M ; Nave, Lucas E ; SanClements, Michael D ; Swanston, Christopher W ; Strahm, Brian D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a402t-64b7b965493ff802febca0b32c4ca8e9b4e710221b78877e8d5dac32a93080ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biogeochemical Cycling</topic><topic>Carbon</topic><topic>Cations</topic><topic>Chemical properties</topic><topic>Climate Change</topic><topic>Climate effects</topic><topic>Climate prediction</topic><topic>Decomposition</topic><topic>High temperature</topic><topic>Metals</topic><topic>Moisture</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Sensitivity</topic><topic>Soil</topic><topic>Soil chemistry</topic><topic>Soil properties</topic><topic>Soil temperature</topic><topic>Soils</topic><topic>Subsoils</topic><topic>Temperature</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Possinger, Angela R</creatorcontrib><creatorcontrib>Weiglein, Tyler L</creatorcontrib><creatorcontrib>Bowman, Maggie M</creatorcontrib><creatorcontrib>Gallo, Adrian C</creatorcontrib><creatorcontrib>Hatten, Jeff A</creatorcontrib><creatorcontrib>Heckman, Katherine A</creatorcontrib><creatorcontrib>Matosziuk, Lauren M</creatorcontrib><creatorcontrib>Nave, Lucas E</creatorcontrib><creatorcontrib>SanClements, Michael D</creatorcontrib><creatorcontrib>Swanston, Christopher W</creatorcontrib><creatorcontrib>Strahm, Brian D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Possinger, Angela R</au><au>Weiglein, Tyler L</au><au>Bowman, Maggie M</au><au>Gallo, Adrian C</au><au>Hatten, Jeff A</au><au>Heckman, Katherine A</au><au>Matosziuk, Lauren M</au><au>Nave, Lucas E</au><au>SanClements, Michael D</au><au>Swanston, Christopher W</au><au>Strahm, Brian D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>55</volume><issue>23</issue><spage>16224</spage><epage>16235</epage><pages>16224-16235</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Subsoils store at least 50% of soil organic carbon (SOC) globally, but climate change may accelerate subsoil SOC (SOCsub) decomposition and amplify SOC-climate feedbacks. The climate sensitivity of SOCsub decomposition varies across systems, but we lack the mechanistic links needed to predict system-specific SOCsub vulnerability as a function of measurable properties at larger scales. Here, we show that soil chemical properties exert significant control over SOCsub decomposition under elevated temperature and moisture in subsoils collected across terrestrial National Ecological Observatory Network sites. Compared to a suite of soil and site-level variables, a divalent base cation-to-reactive metal gradient, linked to dominant mechanisms of SOCsub mineral protection, was the best predictor of the climate sensitivity of SOC decomposition. The response was “U”-shaped, showing higher sensitivity to temperature and moisture when either extractable base cations or reactive metals were highest. However, SOCsub in base cation-dominated subsoils was more sensitive to moisture than temperature, with the opposite relationship demonstrated in reactive metal-dominated subsoils. These observations highlight the importance of system-specific mechanisms of mineral stabilization in the prediction of SOCsub vulnerability to climate drivers. Our observations also form the basis for a spatially explicit, scalable, and mechanistically grounded tool for improved prediction of SOCsub response to climate change.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34813696</pmid><doi>10.1021/acs.est.1c04909</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2518-0979</orcidid><orcidid>https://orcid.org/0000-0001-9485-6886</orcidid><orcidid>https://orcid.org/0000-0003-0656-7633</orcidid><orcidid>https://orcid.org/0000-0002-1685-6351</orcidid><orcidid>https://orcid.org/0000-0002-1962-3561</orcidid><orcidid>https://orcid.org/0000-0002-4025-2304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2021-12, Vol.55 (23), p.16224-16235
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_2609422513
source MEDLINE; American Chemical Society Journals
subjects Biogeochemical Cycling
Carbon
Cations
Chemical properties
Climate Change
Climate effects
Climate prediction
Decomposition
High temperature
Metals
Moisture
Organic carbon
Organic soils
Sensitivity
Soil
Soil chemistry
Soil properties
Soil temperature
Soils
Subsoils
Temperature
Terrestrial environments
title Climate Effects on Subsoil Carbon Loss Mediated by Soil Chemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20Effects%20on%20Subsoil%20Carbon%20Loss%20Mediated%20by%20Soil%20Chemistry&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Possinger,%20Angela%20R&rft.date=2021-12-07&rft.volume=55&rft.issue=23&rft.spage=16224&rft.epage=16235&rft.pages=16224-16235&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.1c04909&rft_dat=%3Cproquest_cross%3E2609422513%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609422513&rft_id=info:pmid/34813696&rfr_iscdi=true