Fault Diagnosis of Data-Driven Photovoltaic Power Generation System Based on Deep Reinforcement Learning

Aiming at the problem of fault diagnosis of the photovoltaic power generation system, this paper proposes a photovoltaic power generation system fault diagnosis method based on deep reinforcement learning. This method takes data-driven as the starting point. Firstly, the compressed sensing algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2021-11, Vol.2021, p.1-10
Hauptverfasser: Dai, Shuang, Wang, Dingmei, Li, Weijun, Zhou, Qiang, Tian, Guangke, Dong, Haiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2021
creator Dai, Shuang
Wang, Dingmei
Li, Weijun
Zhou, Qiang
Tian, Guangke
Dong, Haiying
description Aiming at the problem of fault diagnosis of the photovoltaic power generation system, this paper proposes a photovoltaic power generation system fault diagnosis method based on deep reinforcement learning. This method takes data-driven as the starting point. Firstly, the compressed sensing algorithm is used to fill the missing photovoltaic data and then state, action, strategy, and return functions from the environment. Based on the interaction rules and other factors, the fault diagnosis model of the photovoltaic power generation system is established, and the deep neural network is used to approximate the decision network to find the optimal strategy, so as to realize the fault diagnosis of the photovoltaic power generation system. Finally, the effectiveness and accuracy of the method are verified by simulation. The simulation results show that this method can accurately diagnose the fault types of the photovoltaic power generation system, which is of great significance to enhance the security of the photovoltaic power generation system and improve the intelligent operation and maintenance level of the photovoltaic power generation system.
doi_str_mv 10.1155/2021/2506286
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609154130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609154130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c4c56601e907cb261cb467d96214a92525d0c5c26d21c8b0bae3f95f54d564d83</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khrk2yS3T1q11ahYPEDvC3Z7Gyb0iY1SVv6793Snj3NDDy8Ay9Ct5Q8UirEgBFGB0wQyXJ5hnpUyDQRlGfn3U4YTyhLfy7RVQgL0klB8x6aj9RmGXFp1My6YAJ2LS5VVEnpzRYsns5ddFu3jMpoPHU78HgMFryKxln8uQ8RVvhZBWhwd5cAa_wBxrbOa1iBjXgCyltjZ9foolXLADen2Uffo5ev4WsyeR-_DZ8miU7TLCaaayEloVCQTNdMUl1zmTWFZJSrggkmGqKFZrJhVOc1qRWkbSFawRsheZOnfXR3zF1797uBEKuF23jbvayYJAUVnKakUw9Hpb0LwUNbrb1ZKb-vKKkOXVaHLqtTlx2_P_K5sY3amf_1H34bcwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609154130</pqid></control><display><type>article</type><title>Fault Diagnosis of Data-Driven Photovoltaic Power Generation System Based on Deep Reinforcement Learning</title><source>Wiley-Blackwell Open Access Titles</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Dai, Shuang ; Wang, Dingmei ; Li, Weijun ; Zhou, Qiang ; Tian, Guangke ; Dong, Haiying</creator><contributor>Wang, Licheng ; Licheng Wang</contributor><creatorcontrib>Dai, Shuang ; Wang, Dingmei ; Li, Weijun ; Zhou, Qiang ; Tian, Guangke ; Dong, Haiying ; Wang, Licheng ; Licheng Wang</creatorcontrib><description>Aiming at the problem of fault diagnosis of the photovoltaic power generation system, this paper proposes a photovoltaic power generation system fault diagnosis method based on deep reinforcement learning. This method takes data-driven as the starting point. Firstly, the compressed sensing algorithm is used to fill the missing photovoltaic data and then state, action, strategy, and return functions from the environment. Based on the interaction rules and other factors, the fault diagnosis model of the photovoltaic power generation system is established, and the deep neural network is used to approximate the decision network to find the optimal strategy, so as to realize the fault diagnosis of the photovoltaic power generation system. Finally, the effectiveness and accuracy of the method are verified by simulation. The simulation results show that this method can accurately diagnose the fault types of the photovoltaic power generation system, which is of great significance to enhance the security of the photovoltaic power generation system and improve the intelligent operation and maintenance level of the photovoltaic power generation system.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2021/2506286</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Computer simulation ; Decision making ; Deep learning ; Electric power generation ; Engineering ; Fault diagnosis ; Iterative methods ; Machine learning ; Neural networks ; Pattern recognition ; Photovoltaic cells ; Time series</subject><ispartof>Mathematical problems in engineering, 2021-11, Vol.2021, p.1-10</ispartof><rights>Copyright © 2021 Shuang Dai et al.</rights><rights>Copyright © 2021 Shuang Dai et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c4c56601e907cb261cb467d96214a92525d0c5c26d21c8b0bae3f95f54d564d83</citedby><cites>FETCH-LOGICAL-c337t-c4c56601e907cb261cb467d96214a92525d0c5c26d21c8b0bae3f95f54d564d83</cites><orcidid>0000-0002-3909-3246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><contributor>Wang, Licheng</contributor><contributor>Licheng Wang</contributor><creatorcontrib>Dai, Shuang</creatorcontrib><creatorcontrib>Wang, Dingmei</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Zhou, Qiang</creatorcontrib><creatorcontrib>Tian, Guangke</creatorcontrib><creatorcontrib>Dong, Haiying</creatorcontrib><title>Fault Diagnosis of Data-Driven Photovoltaic Power Generation System Based on Deep Reinforcement Learning</title><title>Mathematical problems in engineering</title><description>Aiming at the problem of fault diagnosis of the photovoltaic power generation system, this paper proposes a photovoltaic power generation system fault diagnosis method based on deep reinforcement learning. This method takes data-driven as the starting point. Firstly, the compressed sensing algorithm is used to fill the missing photovoltaic data and then state, action, strategy, and return functions from the environment. Based on the interaction rules and other factors, the fault diagnosis model of the photovoltaic power generation system is established, and the deep neural network is used to approximate the decision network to find the optimal strategy, so as to realize the fault diagnosis of the photovoltaic power generation system. Finally, the effectiveness and accuracy of the method are verified by simulation. The simulation results show that this method can accurately diagnose the fault types of the photovoltaic power generation system, which is of great significance to enhance the security of the photovoltaic power generation system and improve the intelligent operation and maintenance level of the photovoltaic power generation system.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer simulation</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Electric power generation</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Pattern recognition</subject><subject>Photovoltaic cells</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khrk2yS3T1q11ahYPEDvC3Z7Gyb0iY1SVv6793Snj3NDDy8Ay9Ct5Q8UirEgBFGB0wQyXJ5hnpUyDQRlGfn3U4YTyhLfy7RVQgL0klB8x6aj9RmGXFp1My6YAJ2LS5VVEnpzRYsns5ddFu3jMpoPHU78HgMFryKxln8uQ8RVvhZBWhwd5cAa_wBxrbOa1iBjXgCyltjZ9foolXLADen2Uffo5ev4WsyeR-_DZ8miU7TLCaaayEloVCQTNdMUl1zmTWFZJSrggkmGqKFZrJhVOc1qRWkbSFawRsheZOnfXR3zF1797uBEKuF23jbvayYJAUVnKakUw9Hpb0LwUNbrb1ZKb-vKKkOXVaHLqtTlx2_P_K5sY3amf_1H34bcwo</recordid><startdate>20211129</startdate><enddate>20211129</enddate><creator>Dai, Shuang</creator><creator>Wang, Dingmei</creator><creator>Li, Weijun</creator><creator>Zhou, Qiang</creator><creator>Tian, Guangke</creator><creator>Dong, Haiying</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-3909-3246</orcidid></search><sort><creationdate>20211129</creationdate><title>Fault Diagnosis of Data-Driven Photovoltaic Power Generation System Based on Deep Reinforcement Learning</title><author>Dai, Shuang ; Wang, Dingmei ; Li, Weijun ; Zhou, Qiang ; Tian, Guangke ; Dong, Haiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c4c56601e907cb261cb467d96214a92525d0c5c26d21c8b0bae3f95f54d564d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer simulation</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Electric power generation</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Pattern recognition</topic><topic>Photovoltaic cells</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Shuang</creatorcontrib><creatorcontrib>Wang, Dingmei</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><creatorcontrib>Zhou, Qiang</creatorcontrib><creatorcontrib>Tian, Guangke</creatorcontrib><creatorcontrib>Dong, Haiying</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Shuang</au><au>Wang, Dingmei</au><au>Li, Weijun</au><au>Zhou, Qiang</au><au>Tian, Guangke</au><au>Dong, Haiying</au><au>Wang, Licheng</au><au>Licheng Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis of Data-Driven Photovoltaic Power Generation System Based on Deep Reinforcement Learning</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2021-11-29</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Aiming at the problem of fault diagnosis of the photovoltaic power generation system, this paper proposes a photovoltaic power generation system fault diagnosis method based on deep reinforcement learning. This method takes data-driven as the starting point. Firstly, the compressed sensing algorithm is used to fill the missing photovoltaic data and then state, action, strategy, and return functions from the environment. Based on the interaction rules and other factors, the fault diagnosis model of the photovoltaic power generation system is established, and the deep neural network is used to approximate the decision network to find the optimal strategy, so as to realize the fault diagnosis of the photovoltaic power generation system. Finally, the effectiveness and accuracy of the method are verified by simulation. The simulation results show that this method can accurately diagnose the fault types of the photovoltaic power generation system, which is of great significance to enhance the security of the photovoltaic power generation system and improve the intelligent operation and maintenance level of the photovoltaic power generation system.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/2506286</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3909-3246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2021-11, Vol.2021, p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2609154130
source Wiley-Blackwell Open Access Titles; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial intelligence
Artificial neural networks
Computer simulation
Decision making
Deep learning
Electric power generation
Engineering
Fault diagnosis
Iterative methods
Machine learning
Neural networks
Pattern recognition
Photovoltaic cells
Time series
title Fault Diagnosis of Data-Driven Photovoltaic Power Generation System Based on Deep Reinforcement Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20of%20Data-Driven%20Photovoltaic%20Power%20Generation%20System%20Based%20on%20Deep%20Reinforcement%20Learning&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Dai,%20Shuang&rft.date=2021-11-29&rft.volume=2021&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2021/2506286&rft_dat=%3Cproquest_cross%3E2609154130%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609154130&rft_id=info:pmid/&rfr_iscdi=true