Machine‐learning‐enabled discrete element method: Contact detection and resolution of irregular‐shaped particles

This paper presents a machine learning (ML)‐enabled discrete element method (DEM) for the computational mechanics of irregular‐shaped particles. ML‐enabled DEM, as with most conventional DEMs, encompasses four main steps in one typical calculation cycle, namely, (1) the detection and resolution of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2022-01, Vol.46 (1), p.113-140
Hauptverfasser: Lai, Zhengshou, Chen, Qiushi, Huang, Linchong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 1
container_start_page 113
container_title International journal for numerical and analytical methods in geomechanics
container_volume 46
creator Lai, Zhengshou
Chen, Qiushi
Huang, Linchong
description This paper presents a machine learning (ML)‐enabled discrete element method (DEM) for the computational mechanics of irregular‐shaped particles. ML‐enabled DEM, as with most conventional DEMs, encompasses four main steps in one typical calculation cycle, namely, (1) the detection and resolution of contacts, (2) the evaluation of contact behavior, (3) the calculation of particle motion, and (4) the updating of particle geometric descriptions. Unlike conventional DEMs, the proposed method constructs and employs neural networks to detect particle contacts and resolve contact geometric features. Neural networks take particle geometric descriptors as inputs and output the contact status and contact geometric features. Using two‐dimensional elliptical particles as an example, the performance of the ML‐enabled DEM is investigated through five numerical experiments and compared with analytical solutions or conventional DEM methods. A sixth numerical experiment involving irregular‐shaped particles is also presented to showcase the potential and applicability of the proposed method for other particle shapes. ML‐enabled DEM can accurately capture the trajectory and energy evolution of individual particles, the fabric characteristics of dense packing, and the mechanical behavior of packing under large loads, while demonstrating computational efficiency over conventional methods.
doi_str_mv 10.1002/nag.3293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609125838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609125838</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3163-5f892436a2950e0082a3d5c96dba5e21896793bf4171af6632328fd8ef5da7053</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqUgcYRIbNik-Kd2Y3ZVBQWpwAbW0TSetK5SO9gpqDuOwBk5CW7LltXM6H168_QIuWR0wCjlNw4WA8G1OCI9RrXKdSHFMelRoUSuqWKn5CzGFaVUJrVHPp6gWlqHP1_fDUJw1i3Sig7mDZrM2FgF7DDDBtfoumyN3dKb22ziXQdVl5kkVp31LgNnsoDRN5v96evMhoCLTQMhGcYltMmvhdDZqsF4Tk5qaCJe_M0-ebu_e5085LOX6eNkPMtBsBRY1oXmQ6GAa0mR0oKDMLLSysxBImeFViMt5vWQjRjUSgkueFGbAmtpYESl6JOrg28b_PsGY1eu_Ca49LLkimrGZSGKRF0fqCr4GAPWZRvsGsK2ZLTctVqmVstdqwnND-inbXD7L1c-j6d7_hewpHyp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609125838</pqid></control><display><type>article</type><title>Machine‐learning‐enabled discrete element method: Contact detection and resolution of irregular‐shaped particles</title><source>Access via Wiley Online Library</source><creator>Lai, Zhengshou ; Chen, Qiushi ; Huang, Linchong</creator><creatorcontrib>Lai, Zhengshou ; Chen, Qiushi ; Huang, Linchong</creatorcontrib><description>This paper presents a machine learning (ML)‐enabled discrete element method (DEM) for the computational mechanics of irregular‐shaped particles. ML‐enabled DEM, as with most conventional DEMs, encompasses four main steps in one typical calculation cycle, namely, (1) the detection and resolution of contacts, (2) the evaluation of contact behavior, (3) the calculation of particle motion, and (4) the updating of particle geometric descriptions. Unlike conventional DEMs, the proposed method constructs and employs neural networks to detect particle contacts and resolve contact geometric features. Neural networks take particle geometric descriptors as inputs and output the contact status and contact geometric features. Using two‐dimensional elliptical particles as an example, the performance of the ML‐enabled DEM is investigated through five numerical experiments and compared with analytical solutions or conventional DEM methods. A sixth numerical experiment involving irregular‐shaped particles is also presented to showcase the potential and applicability of the proposed method for other particle shapes. ML‐enabled DEM can accurately capture the trajectory and energy evolution of individual particles, the fabric characteristics of dense packing, and the mechanical behavior of packing under large loads, while demonstrating computational efficiency over conventional methods.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3293</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Computer applications ; contact detection and resolution ; Detection ; Discrete element method ; Exact solutions ; Learning algorithms ; Learning behaviour ; Machine learning ; Mechanical properties ; Mechanics ; neural network ; Neural networks ; Numerical methods ; Particle motion ; particle shape ; Resolution</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2022-01, Vol.46 (1), p.113-140</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3163-5f892436a2950e0082a3d5c96dba5e21896793bf4171af6632328fd8ef5da7053</citedby><cites>FETCH-LOGICAL-a3163-5f892436a2950e0082a3d5c96dba5e21896793bf4171af6632328fd8ef5da7053</cites><orcidid>0000-0002-0394-6710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3293$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3293$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lai, Zhengshou</creatorcontrib><creatorcontrib>Chen, Qiushi</creatorcontrib><creatorcontrib>Huang, Linchong</creatorcontrib><title>Machine‐learning‐enabled discrete element method: Contact detection and resolution of irregular‐shaped particles</title><title>International journal for numerical and analytical methods in geomechanics</title><description>This paper presents a machine learning (ML)‐enabled discrete element method (DEM) for the computational mechanics of irregular‐shaped particles. ML‐enabled DEM, as with most conventional DEMs, encompasses four main steps in one typical calculation cycle, namely, (1) the detection and resolution of contacts, (2) the evaluation of contact behavior, (3) the calculation of particle motion, and (4) the updating of particle geometric descriptions. Unlike conventional DEMs, the proposed method constructs and employs neural networks to detect particle contacts and resolve contact geometric features. Neural networks take particle geometric descriptors as inputs and output the contact status and contact geometric features. Using two‐dimensional elliptical particles as an example, the performance of the ML‐enabled DEM is investigated through five numerical experiments and compared with analytical solutions or conventional DEM methods. A sixth numerical experiment involving irregular‐shaped particles is also presented to showcase the potential and applicability of the proposed method for other particle shapes. ML‐enabled DEM can accurately capture the trajectory and energy evolution of individual particles, the fabric characteristics of dense packing, and the mechanical behavior of packing under large loads, while demonstrating computational efficiency over conventional methods.</description><subject>Computer applications</subject><subject>contact detection and resolution</subject><subject>Detection</subject><subject>Discrete element method</subject><subject>Exact solutions</subject><subject>Learning algorithms</subject><subject>Learning behaviour</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>Particle motion</subject><subject>particle shape</subject><subject>Resolution</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqUgcYRIbNik-Kd2Y3ZVBQWpwAbW0TSetK5SO9gpqDuOwBk5CW7LltXM6H168_QIuWR0wCjlNw4WA8G1OCI9RrXKdSHFMelRoUSuqWKn5CzGFaVUJrVHPp6gWlqHP1_fDUJw1i3Sig7mDZrM2FgF7DDDBtfoumyN3dKb22ziXQdVl5kkVp31LgNnsoDRN5v96evMhoCLTQMhGcYltMmvhdDZqsF4Tk5qaCJe_M0-ebu_e5085LOX6eNkPMtBsBRY1oXmQ6GAa0mR0oKDMLLSysxBImeFViMt5vWQjRjUSgkueFGbAmtpYESl6JOrg28b_PsGY1eu_Ca49LLkimrGZSGKRF0fqCr4GAPWZRvsGsK2ZLTctVqmVstdqwnND-inbXD7L1c-j6d7_hewpHyp</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Lai, Zhengshou</creator><creator>Chen, Qiushi</creator><creator>Huang, Linchong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0394-6710</orcidid></search><sort><creationdate>202201</creationdate><title>Machine‐learning‐enabled discrete element method: Contact detection and resolution of irregular‐shaped particles</title><author>Lai, Zhengshou ; Chen, Qiushi ; Huang, Linchong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3163-5f892436a2950e0082a3d5c96dba5e21896793bf4171af6632328fd8ef5da7053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computer applications</topic><topic>contact detection and resolution</topic><topic>Detection</topic><topic>Discrete element method</topic><topic>Exact solutions</topic><topic>Learning algorithms</topic><topic>Learning behaviour</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>Particle motion</topic><topic>particle shape</topic><topic>Resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Zhengshou</creatorcontrib><creatorcontrib>Chen, Qiushi</creatorcontrib><creatorcontrib>Huang, Linchong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Zhengshou</au><au>Chen, Qiushi</au><au>Huang, Linchong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine‐learning‐enabled discrete element method: Contact detection and resolution of irregular‐shaped particles</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2022-01</date><risdate>2022</risdate><volume>46</volume><issue>1</issue><spage>113</spage><epage>140</epage><pages>113-140</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>This paper presents a machine learning (ML)‐enabled discrete element method (DEM) for the computational mechanics of irregular‐shaped particles. ML‐enabled DEM, as with most conventional DEMs, encompasses four main steps in one typical calculation cycle, namely, (1) the detection and resolution of contacts, (2) the evaluation of contact behavior, (3) the calculation of particle motion, and (4) the updating of particle geometric descriptions. Unlike conventional DEMs, the proposed method constructs and employs neural networks to detect particle contacts and resolve contact geometric features. Neural networks take particle geometric descriptors as inputs and output the contact status and contact geometric features. Using two‐dimensional elliptical particles as an example, the performance of the ML‐enabled DEM is investigated through five numerical experiments and compared with analytical solutions or conventional DEM methods. A sixth numerical experiment involving irregular‐shaped particles is also presented to showcase the potential and applicability of the proposed method for other particle shapes. ML‐enabled DEM can accurately capture the trajectory and energy evolution of individual particles, the fabric characteristics of dense packing, and the mechanical behavior of packing under large loads, while demonstrating computational efficiency over conventional methods.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3293</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-0394-6710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2022-01, Vol.46 (1), p.113-140
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_journals_2609125838
source Access via Wiley Online Library
subjects Computer applications
contact detection and resolution
Detection
Discrete element method
Exact solutions
Learning algorithms
Learning behaviour
Machine learning
Mechanical properties
Mechanics
neural network
Neural networks
Numerical methods
Particle motion
particle shape
Resolution
title Machine‐learning‐enabled discrete element method: Contact detection and resolution of irregular‐shaped particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%E2%80%90learning%E2%80%90enabled%20discrete%20element%20method:%20Contact%20detection%20and%20resolution%20of%20irregular%E2%80%90shaped%20particles&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Lai,%20Zhengshou&rft.date=2022-01&rft.volume=46&rft.issue=1&rft.spage=113&rft.epage=140&rft.pages=113-140&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3293&rft_dat=%3Cproquest_cross%3E2609125838%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2609125838&rft_id=info:pmid/&rfr_iscdi=true