Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames

Femtosecond, Two-photon Absorption Laser Induced Fluorescence (fs-TALIF) corrected for collisional quenching with Raman scattering is used to capture spatially resolved atomic oxygen profiles in lean premixed, hydrogen cellular tubular flames. This method has allowed comparisons of number density an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2021-12, Vol.234, p.111647, Article 111647
Hauptverfasser: Marshall, Garrett J., Walsh, Patrick S., Hall, Carl A., Roy, Sukesh, Pitz, Robert W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111647
container_title Combustion and flame
container_volume 234
creator Marshall, Garrett J.
Walsh, Patrick S.
Hall, Carl A.
Roy, Sukesh
Pitz, Robert W.
description Femtosecond, Two-photon Absorption Laser Induced Fluorescence (fs-TALIF) corrected for collisional quenching with Raman scattering is used to capture spatially resolved atomic oxygen profiles in lean premixed, hydrogen cellular tubular flames. This method has allowed comparisons of number density and O-atom concentration distributions in flames of variable stretch rates in a manner similar to that previously performed on the minor flame species H and OH. As stretch rate increases, the radii of peak O-atom in the cells decrease while O-atom concentrations remain relatively unaffected. This differs from non-cellular flame data where increasing stretch rate increases minor species number densities. Three chemical mechanisms are employed to perform direct numerical simulations of the O-atom profiles in the tubular flames and are found to be in close agreement with one another. For N2-diluted flames, the simulations predict O-atom number densities within the uncertainty of the data for the cellular region but over-predict the O-atom number densities in the dearth region of the 2D flames. Additionally, simulated O-atom concentrations contradict the trend of the data and increase with stretch rate. Changing the diluent from N2 to CO2 lowers the peak concentrations of atomic oxygen as CO2 becomes reactive at flame temperatures. This allows the CO+O(+M)⇌CO2(+M) reaction to consume atomic oxygen. Flames diluted with carbon dioxide caused the model to over-predict the O-atom concentration in these flames. This discrepancy is similar to past minor species measurements in cellular tubular flames though it does not occur in minor species profiles of non-cellular (1D), CO2-diluted tubular flames. The discrepancy could be caused by the simplifying relationships employed to convert the 3D geometry to 2D in the simulations.
doi_str_mv 10.1016/j.combustflame.2021.111647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608912979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218021003904</els_id><sourcerecordid>2608912979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-dc917c7ca69adc16b3552d87aa198901d26cfcaf3458d0cbaaec37ecec7dd16c3</originalsourceid><addsrcrecordid>eNqNkEtP3DAQgC1UJLYL_8Gi1yb1OJtXbxUttBISEoKz5Ywn4FUSp7ZTdk_963jZHnrkNKPRN6-PsUsQOQiovmxzdGO3hNgPeqRcCgk5AFSb-oStoCyrTLYSPrCVECAyCY04Yx9D2Aoh6k1RrNjfez3qKUPnPWEkw-OLy-ZnF93EdRecn6NN6aADeW4ns2Bi-mFxngLShMRdz3V0o0XudvsnmhLFZ0-j3SXyeW-8S8XPHGkYlkF7HpfuLb5dHM7Zaa-HQBf_4po9Xv94uPqZ3d7d_Lr6dpthUcqYGWyhxhp11WqDUHVFWUrT1FpD27QCjKywR90Xm7IxAjutCYuakLA2Bios1uzTce7s3e-FQlRbt_gprVSyEk0Lsq3bRH09UuhdCJ56NXs7ar9XINRBuNqq_4Wrg3B1FJ6avx-bKf3xx5JXAe1BkbEHt8o4-54xr7TWlPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608912979</pqid></control><display><type>article</type><title>Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Marshall, Garrett J. ; Walsh, Patrick S. ; Hall, Carl A. ; Roy, Sukesh ; Pitz, Robert W.</creator><creatorcontrib>Marshall, Garrett J. ; Walsh, Patrick S. ; Hall, Carl A. ; Roy, Sukesh ; Pitz, Robert W.</creatorcontrib><description>Femtosecond, Two-photon Absorption Laser Induced Fluorescence (fs-TALIF) corrected for collisional quenching with Raman scattering is used to capture spatially resolved atomic oxygen profiles in lean premixed, hydrogen cellular tubular flames. This method has allowed comparisons of number density and O-atom concentration distributions in flames of variable stretch rates in a manner similar to that previously performed on the minor flame species H and OH. As stretch rate increases, the radii of peak O-atom in the cells decrease while O-atom concentrations remain relatively unaffected. This differs from non-cellular flame data where increasing stretch rate increases minor species number densities. Three chemical mechanisms are employed to perform direct numerical simulations of the O-atom profiles in the tubular flames and are found to be in close agreement with one another. For N2-diluted flames, the simulations predict O-atom number densities within the uncertainty of the data for the cellular region but over-predict the O-atom number densities in the dearth region of the 2D flames. Additionally, simulated O-atom concentrations contradict the trend of the data and increase with stretch rate. Changing the diluent from N2 to CO2 lowers the peak concentrations of atomic oxygen as CO2 becomes reactive at flame temperatures. This allows the CO+O(+M)⇌CO2(+M) reaction to consume atomic oxygen. Flames diluted with carbon dioxide caused the model to over-predict the O-atom concentration in these flames. This discrepancy is similar to past minor species measurements in cellular tubular flames though it does not occur in minor species profiles of non-cellular (1D), CO2-diluted tubular flames. The discrepancy could be caused by the simplifying relationships employed to convert the 3D geometry to 2D in the simulations.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2021.111647</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Atom concentration ; Atomic oxygen ; Carbon dioxide ; Cellular ; Dilution ; Direct numerical simulation ; Femtosecond ; Hydrogen ; Laser induced fluorescence ; Mathematical models ; Photon absorption ; Photons ; Premixed ; Raman spectra ; Simulation ; Tubular flame</subject><ispartof>Combustion and flame, 2021-12, Vol.234, p.111647, Article 111647</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-dc917c7ca69adc16b3552d87aa198901d26cfcaf3458d0cbaaec37ecec7dd16c3</citedby><cites>FETCH-LOGICAL-c352t-dc917c7ca69adc16b3552d87aa198901d26cfcaf3458d0cbaaec37ecec7dd16c3</cites><orcidid>0000-0003-1917-5321 ; 0000-0003-3147-4359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.combustflame.2021.111647$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Marshall, Garrett J.</creatorcontrib><creatorcontrib>Walsh, Patrick S.</creatorcontrib><creatorcontrib>Hall, Carl A.</creatorcontrib><creatorcontrib>Roy, Sukesh</creatorcontrib><creatorcontrib>Pitz, Robert W.</creatorcontrib><title>Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames</title><title>Combustion and flame</title><description>Femtosecond, Two-photon Absorption Laser Induced Fluorescence (fs-TALIF) corrected for collisional quenching with Raman scattering is used to capture spatially resolved atomic oxygen profiles in lean premixed, hydrogen cellular tubular flames. This method has allowed comparisons of number density and O-atom concentration distributions in flames of variable stretch rates in a manner similar to that previously performed on the minor flame species H and OH. As stretch rate increases, the radii of peak O-atom in the cells decrease while O-atom concentrations remain relatively unaffected. This differs from non-cellular flame data where increasing stretch rate increases minor species number densities. Three chemical mechanisms are employed to perform direct numerical simulations of the O-atom profiles in the tubular flames and are found to be in close agreement with one another. For N2-diluted flames, the simulations predict O-atom number densities within the uncertainty of the data for the cellular region but over-predict the O-atom number densities in the dearth region of the 2D flames. Additionally, simulated O-atom concentrations contradict the trend of the data and increase with stretch rate. Changing the diluent from N2 to CO2 lowers the peak concentrations of atomic oxygen as CO2 becomes reactive at flame temperatures. This allows the CO+O(+M)⇌CO2(+M) reaction to consume atomic oxygen. Flames diluted with carbon dioxide caused the model to over-predict the O-atom concentration in these flames. This discrepancy is similar to past minor species measurements in cellular tubular flames though it does not occur in minor species profiles of non-cellular (1D), CO2-diluted tubular flames. The discrepancy could be caused by the simplifying relationships employed to convert the 3D geometry to 2D in the simulations.</description><subject>Atom concentration</subject><subject>Atomic oxygen</subject><subject>Carbon dioxide</subject><subject>Cellular</subject><subject>Dilution</subject><subject>Direct numerical simulation</subject><subject>Femtosecond</subject><subject>Hydrogen</subject><subject>Laser induced fluorescence</subject><subject>Mathematical models</subject><subject>Photon absorption</subject><subject>Photons</subject><subject>Premixed</subject><subject>Raman spectra</subject><subject>Simulation</subject><subject>Tubular flame</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtP3DAQgC1UJLYL_8Gi1yb1OJtXbxUttBISEoKz5Ywn4FUSp7ZTdk_963jZHnrkNKPRN6-PsUsQOQiovmxzdGO3hNgPeqRcCgk5AFSb-oStoCyrTLYSPrCVECAyCY04Yx9D2Aoh6k1RrNjfez3qKUPnPWEkw-OLy-ZnF93EdRecn6NN6aADeW4ns2Bi-mFxngLShMRdz3V0o0XudvsnmhLFZ0-j3SXyeW-8S8XPHGkYlkF7HpfuLb5dHM7Zaa-HQBf_4po9Xv94uPqZ3d7d_Lr6dpthUcqYGWyhxhp11WqDUHVFWUrT1FpD27QCjKywR90Xm7IxAjutCYuakLA2Bios1uzTce7s3e-FQlRbt_gprVSyEk0Lsq3bRH09UuhdCJ56NXs7ar9XINRBuNqq_4Wrg3B1FJ6avx-bKf3xx5JXAe1BkbEHt8o4-54xr7TWlPQ</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Marshall, Garrett J.</creator><creator>Walsh, Patrick S.</creator><creator>Hall, Carl A.</creator><creator>Roy, Sukesh</creator><creator>Pitz, Robert W.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1917-5321</orcidid><orcidid>https://orcid.org/0000-0003-3147-4359</orcidid></search><sort><creationdate>202112</creationdate><title>Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames</title><author>Marshall, Garrett J. ; Walsh, Patrick S. ; Hall, Carl A. ; Roy, Sukesh ; Pitz, Robert W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-dc917c7ca69adc16b3552d87aa198901d26cfcaf3458d0cbaaec37ecec7dd16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atom concentration</topic><topic>Atomic oxygen</topic><topic>Carbon dioxide</topic><topic>Cellular</topic><topic>Dilution</topic><topic>Direct numerical simulation</topic><topic>Femtosecond</topic><topic>Hydrogen</topic><topic>Laser induced fluorescence</topic><topic>Mathematical models</topic><topic>Photon absorption</topic><topic>Photons</topic><topic>Premixed</topic><topic>Raman spectra</topic><topic>Simulation</topic><topic>Tubular flame</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, Garrett J.</creatorcontrib><creatorcontrib>Walsh, Patrick S.</creatorcontrib><creatorcontrib>Hall, Carl A.</creatorcontrib><creatorcontrib>Roy, Sukesh</creatorcontrib><creatorcontrib>Pitz, Robert W.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, Garrett J.</au><au>Walsh, Patrick S.</au><au>Hall, Carl A.</au><au>Roy, Sukesh</au><au>Pitz, Robert W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames</atitle><jtitle>Combustion and flame</jtitle><date>2021-12</date><risdate>2021</risdate><volume>234</volume><spage>111647</spage><pages>111647-</pages><artnum>111647</artnum><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>Femtosecond, Two-photon Absorption Laser Induced Fluorescence (fs-TALIF) corrected for collisional quenching with Raman scattering is used to capture spatially resolved atomic oxygen profiles in lean premixed, hydrogen cellular tubular flames. This method has allowed comparisons of number density and O-atom concentration distributions in flames of variable stretch rates in a manner similar to that previously performed on the minor flame species H and OH. As stretch rate increases, the radii of peak O-atom in the cells decrease while O-atom concentrations remain relatively unaffected. This differs from non-cellular flame data where increasing stretch rate increases minor species number densities. Three chemical mechanisms are employed to perform direct numerical simulations of the O-atom profiles in the tubular flames and are found to be in close agreement with one another. For N2-diluted flames, the simulations predict O-atom number densities within the uncertainty of the data for the cellular region but over-predict the O-atom number densities in the dearth region of the 2D flames. Additionally, simulated O-atom concentrations contradict the trend of the data and increase with stretch rate. Changing the diluent from N2 to CO2 lowers the peak concentrations of atomic oxygen as CO2 becomes reactive at flame temperatures. This allows the CO+O(+M)⇌CO2(+M) reaction to consume atomic oxygen. Flames diluted with carbon dioxide caused the model to over-predict the O-atom concentration in these flames. This discrepancy is similar to past minor species measurements in cellular tubular flames though it does not occur in minor species profiles of non-cellular (1D), CO2-diluted tubular flames. The discrepancy could be caused by the simplifying relationships employed to convert the 3D geometry to 2D in the simulations.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2021.111647</doi><orcidid>https://orcid.org/0000-0003-1917-5321</orcidid><orcidid>https://orcid.org/0000-0003-3147-4359</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2021-12, Vol.234, p.111647, Article 111647
issn 0010-2180
1556-2921
language eng
recordid cdi_proquest_journals_2608912979
source Elsevier ScienceDirect Journals Complete
subjects Atom concentration
Atomic oxygen
Carbon dioxide
Cellular
Dilution
Direct numerical simulation
Femtosecond
Hydrogen
Laser induced fluorescence
Mathematical models
Photon absorption
Photons
Premixed
Raman spectra
Simulation
Tubular flame
title Raman-corrected two-photon absorption laser induced fluorescence of atomic oxygen in premixed hydrogen, cellular tubular flames
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A39%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Raman-corrected%20two-photon%20absorption%20laser%20induced%20fluorescence%20of%20atomic%20oxygen%20in%20premixed%20hydrogen,%20cellular%20tubular%20flames&rft.jtitle=Combustion%20and%20flame&rft.au=Marshall,%20Garrett%20J.&rft.date=2021-12&rft.volume=234&rft.spage=111647&rft.pages=111647-&rft.artnum=111647&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2021.111647&rft_dat=%3Cproquest_cross%3E2608912979%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608912979&rft_id=info:pmid/&rft_els_id=S0010218021003904&rfr_iscdi=true