Black swan models for the entertainment industry with an application to the movie business
Success in popular entertainment is highly unpredictable. Yet it is the high-impact low-probability events—known as ‘black swans’—that drive entertainment industry profitability because success is highly concentrated on a small number of winners. In this research, we apply recently developed statist...
Gespeichert in:
Veröffentlicht in: | Empirical economics 2020-12, Vol.59 (6), p.3019-3032 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3032 |
---|---|
container_issue | 6 |
container_start_page | 3019 |
container_title | Empirical economics |
container_volume | 59 |
creator | Walls, W. D. McKenzie, Jordi |
description | Success in popular entertainment is highly unpredictable. Yet it is the high-impact low-probability events—known as ‘black swans’—that drive entertainment industry profitability because success is highly concentrated on a small number of winners. In this research, we apply recently developed statistical tools to model motion-picture success; these tools explicitly account for rare extreme events while permitting valid statistical inferences to be made on how product attributes are associated with product success. The specific empirical application relates the attributes of a film and its theatrical release to the distribution of worldwide cumulative box-office revenue. A regression model with skew-stable random disturbances is applied to a large sample of motion pictures to quantify the correlates of film success while explicitly accounting for skewness and heavy tails. The skew-stable estimates are compared to estimates obtained from symmetric-stable regression, ordinary least-squares regression, and several alternative robust-to-outliers regression models. Failure to control explicitly for heavy tails and skewness generates misleading statistical inferences, particularly regarding the impact of production budget, opening week screens, and star power on a film’s success at the box-office. |
doi_str_mv | 10.1007/s00181-019-01753-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608627068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608627068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-61ab95d1fcdbc3e38a547e9325eca32c270a666db4ff2c04b6d21949fc1fe1bc3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMQf8kdjJCBVfUiUWWFgsx3GoS2IH26Htv8c0SGwdnt4bzrlPugBcYnSNEeI3ASFc4gzhKg0vaLY9AjOc0yIrK4KPwQxRzjNOKTkFZyGsEUK0LPIZeL_rpPqEYSMt7F2juwBb52Fcaaht1D5KY_t0QWObMUS_gxsTVzDRchg6o2Q0zsLo9kbvvo2G9RiM1SGcg5NWdkFf_O05eHu4f108ZcuXx-fF7TJTOSYxY1jWVdHgVjW1opqWssi5rigptJKUKMKRZIw1dd62RKG8Zg3BVV61CrcaJ2UOrqbcwbuvUYco1m70Nr0UhKGSpQBWHqQSURJSUZ4oMlHKuxC8bsXgTS_9TmAkfpsWU9MiNS32TYttkugkhQTbD-3_ow9YP4a-glo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2270822937</pqid></control><display><type>article</type><title>Black swan models for the entertainment industry with an application to the movie business</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Walls, W. D. ; McKenzie, Jordi</creator><creatorcontrib>Walls, W. D. ; McKenzie, Jordi</creatorcontrib><description>Success in popular entertainment is highly unpredictable. Yet it is the high-impact low-probability events—known as ‘black swans’—that drive entertainment industry profitability because success is highly concentrated on a small number of winners. In this research, we apply recently developed statistical tools to model motion-picture success; these tools explicitly account for rare extreme events while permitting valid statistical inferences to be made on how product attributes are associated with product success. The specific empirical application relates the attributes of a film and its theatrical release to the distribution of worldwide cumulative box-office revenue. A regression model with skew-stable random disturbances is applied to a large sample of motion pictures to quantify the correlates of film success while explicitly accounting for skewness and heavy tails. The skew-stable estimates are compared to estimates obtained from symmetric-stable regression, ordinary least-squares regression, and several alternative robust-to-outliers regression models. Failure to control explicitly for heavy tails and skewness generates misleading statistical inferences, particularly regarding the impact of production budget, opening week screens, and star power on a film’s success at the box-office.</description><identifier>ISSN: 0377-7332</identifier><identifier>EISSN: 1435-8921</identifier><identifier>DOI: 10.1007/s00181-019-01753-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Attributes ; Econometrics ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Entertainment industry ; Finance ; Insurance ; Management ; Motion pictures ; Power ; Profitability ; Skewness ; Statistics for Business ; Success ; Winners</subject><ispartof>Empirical economics, 2020-12, Vol.59 (6), p.3019-3032</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Empirical Economics is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-61ab95d1fcdbc3e38a547e9325eca32c270a666db4ff2c04b6d21949fc1fe1bc3</citedby><cites>FETCH-LOGICAL-c412t-61ab95d1fcdbc3e38a547e9325eca32c270a666db4ff2c04b6d21949fc1fe1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00181-019-01753-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00181-019-01753-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Walls, W. D.</creatorcontrib><creatorcontrib>McKenzie, Jordi</creatorcontrib><title>Black swan models for the entertainment industry with an application to the movie business</title><title>Empirical economics</title><addtitle>Empir Econ</addtitle><description>Success in popular entertainment is highly unpredictable. Yet it is the high-impact low-probability events—known as ‘black swans’—that drive entertainment industry profitability because success is highly concentrated on a small number of winners. In this research, we apply recently developed statistical tools to model motion-picture success; these tools explicitly account for rare extreme events while permitting valid statistical inferences to be made on how product attributes are associated with product success. The specific empirical application relates the attributes of a film and its theatrical release to the distribution of worldwide cumulative box-office revenue. A regression model with skew-stable random disturbances is applied to a large sample of motion pictures to quantify the correlates of film success while explicitly accounting for skewness and heavy tails. The skew-stable estimates are compared to estimates obtained from symmetric-stable regression, ordinary least-squares regression, and several alternative robust-to-outliers regression models. Failure to control explicitly for heavy tails and skewness generates misleading statistical inferences, particularly regarding the impact of production budget, opening week screens, and star power on a film’s success at the box-office.</description><subject>Attributes</subject><subject>Econometrics</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Entertainment industry</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Motion pictures</subject><subject>Power</subject><subject>Profitability</subject><subject>Skewness</subject><subject>Statistics for Business</subject><subject>Success</subject><subject>Winners</subject><issn>0377-7332</issn><issn>1435-8921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kD1PwzAURS0EEqXwB5gsMQf8kdjJCBVfUiUWWFgsx3GoS2IH26Htv8c0SGwdnt4bzrlPugBcYnSNEeI3ASFc4gzhKg0vaLY9AjOc0yIrK4KPwQxRzjNOKTkFZyGsEUK0LPIZeL_rpPqEYSMt7F2juwBb52Fcaaht1D5KY_t0QWObMUS_gxsTVzDRchg6o2Q0zsLo9kbvvo2G9RiM1SGcg5NWdkFf_O05eHu4f108ZcuXx-fF7TJTOSYxY1jWVdHgVjW1opqWssi5rigptJKUKMKRZIw1dd62RKG8Zg3BVV61CrcaJ2UOrqbcwbuvUYco1m70Nr0UhKGSpQBWHqQSURJSUZ4oMlHKuxC8bsXgTS_9TmAkfpsWU9MiNS32TYttkugkhQTbD-3_ow9YP4a-glo</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Walls, W. D.</creator><creator>McKenzie, Jordi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>PRINS</scope></search><sort><creationdate>20201201</creationdate><title>Black swan models for the entertainment industry with an application to the movie business</title><author>Walls, W. D. ; McKenzie, Jordi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-61ab95d1fcdbc3e38a547e9325eca32c270a666db4ff2c04b6d21949fc1fe1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attributes</topic><topic>Econometrics</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Entertainment industry</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Motion pictures</topic><topic>Power</topic><topic>Profitability</topic><topic>Skewness</topic><topic>Statistics for Business</topic><topic>Success</topic><topic>Winners</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walls, W. D.</creatorcontrib><creatorcontrib>McKenzie, Jordi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>ProQuest Central China</collection><jtitle>Empirical economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walls, W. D.</au><au>McKenzie, Jordi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black swan models for the entertainment industry with an application to the movie business</atitle><jtitle>Empirical economics</jtitle><stitle>Empir Econ</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>59</volume><issue>6</issue><spage>3019</spage><epage>3032</epage><pages>3019-3032</pages><issn>0377-7332</issn><eissn>1435-8921</eissn><abstract>Success in popular entertainment is highly unpredictable. Yet it is the high-impact low-probability events—known as ‘black swans’—that drive entertainment industry profitability because success is highly concentrated on a small number of winners. In this research, we apply recently developed statistical tools to model motion-picture success; these tools explicitly account for rare extreme events while permitting valid statistical inferences to be made on how product attributes are associated with product success. The specific empirical application relates the attributes of a film and its theatrical release to the distribution of worldwide cumulative box-office revenue. A regression model with skew-stable random disturbances is applied to a large sample of motion pictures to quantify the correlates of film success while explicitly accounting for skewness and heavy tails. The skew-stable estimates are compared to estimates obtained from symmetric-stable regression, ordinary least-squares regression, and several alternative robust-to-outliers regression models. Failure to control explicitly for heavy tails and skewness generates misleading statistical inferences, particularly regarding the impact of production budget, opening week screens, and star power on a film’s success at the box-office.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00181-019-01753-x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-7332 |
ispartof | Empirical economics, 2020-12, Vol.59 (6), p.3019-3032 |
issn | 0377-7332 1435-8921 |
language | eng |
recordid | cdi_proquest_journals_2608627068 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Attributes Econometrics Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Entertainment industry Finance Insurance Management Motion pictures Power Profitability Skewness Statistics for Business Success Winners |
title | Black swan models for the entertainment industry with an application to the movie business |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20swan%20models%20for%20the%20entertainment%20industry%20with%20an%20application%20to%20the%20movie%20business&rft.jtitle=Empirical%20economics&rft.au=Walls,%20W.%20D.&rft.date=2020-12-01&rft.volume=59&rft.issue=6&rft.spage=3019&rft.epage=3032&rft.pages=3019-3032&rft.issn=0377-7332&rft.eissn=1435-8921&rft_id=info:doi/10.1007/s00181-019-01753-x&rft_dat=%3Cproquest_cross%3E2608627068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2270822937&rft_id=info:pmid/&rfr_iscdi=true |