Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs
Relaxed constant positive linear dependence constraint qualification (RCPLD) for a system of smooth equalities and inequalities is a constraint qualification that is weaker than the usual constraint qualifications such as Mangasarian Fromovitz constraint qualification and the linear constraint quali...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2020-09, Vol.78 (1), p.181-205 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 205 |
---|---|
container_issue | 1 |
container_start_page | 181 |
container_title | Journal of global optimization |
container_volume | 78 |
creator | Xu, Mengwei Ye, Jane J. |
description | Relaxed constant positive linear dependence constraint qualification (RCPLD) for a system of smooth equalities and inequalities is a constraint qualification that is weaker than the usual constraint qualifications such as Mangasarian Fromovitz constraint qualification and the linear constraint qualification. Moreover RCPLD is known to induce an error bound property. In this paper we extend RCPLD to a very general feasibility system which may include Lipschitz continuous inequality constraints, complementarity constraints and abstract constraints. We show that this RCPLD for the general system is a constraint qualification for the optimality condition in terms of limiting subdifferential and limiting normal cone and it is a sufficient condition for the error bound property under the strict complementarity condition for the complementarity system and Clarke regularity conditions for the inequality constraints and the abstract constraint set. Moreover we introduce and study some sufficient conditions for RCPLD including the relaxed constant rank constraint qualification. Finally we apply our results to the bilevel program. |
doi_str_mv | 10.1007/s10898-020-00907-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2608627015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718394632</galeid><sourcerecordid>A718394632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-d605f41866abea6089a747167e5067a9790809de0f7aa2297b62d473d8a1eaeb3</originalsourceid><addsrcrecordid>eNp9kU9L9DAQxoMouP75Ap4CnquTdJs0RxFfFQRB9Bxmm-kSyaY16cr67Y3WF28yh4Hh98zMw8PYmYALAaAvs4DWtBVIqAAM6Gq3xxai0XUljVD7bAFGNlUDIA7ZUc6vUKi2kQsWnijgjhzvhpgnjBMfh-wn_048-EiYuKORoqPY0cwk9IV622Lwve9w8kPkGB33U-Y4juH_bBr4ygd6p8DHNKwTbvIJO-gxZDr96cfs5d_N8_Vd9fB4e3999VB1ddNOlVPQ9EvRKoUrQlWcoV5qoTQ1oDQabaAF4wh6jSil0Ssl3VLXrkVBSKv6mJ3Pe8vhty3lyb4O2xTLSSvLOiU1iKZQFzO1xkDWx34o3rpSjja-WKW-vG-vtGhrs1S1LAI5C7o05Jyot2PyG0wfVoD9isHOMdgSg_2Owe6KqJ5FucBxTen3lz9UnzmejP4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608627015</pqid></control><display><type>article</type><title>Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs</title><source>SpringerLink</source><creator>Xu, Mengwei ; Ye, Jane J.</creator><creatorcontrib>Xu, Mengwei ; Ye, Jane J.</creatorcontrib><description>Relaxed constant positive linear dependence constraint qualification (RCPLD) for a system of smooth equalities and inequalities is a constraint qualification that is weaker than the usual constraint qualifications such as Mangasarian Fromovitz constraint qualification and the linear constraint qualification. Moreover RCPLD is known to induce an error bound property. In this paper we extend RCPLD to a very general feasibility system which may include Lipschitz continuous inequality constraints, complementarity constraints and abstract constraints. We show that this RCPLD for the general system is a constraint qualification for the optimality condition in terms of limiting subdifferential and limiting normal cone and it is a sufficient condition for the error bound property under the strict complementarity condition for the complementarity system and Clarke regularity conditions for the inequality constraints and the abstract constraint set. Moreover we introduce and study some sufficient conditions for RCPLD including the relaxed constant rank constraint qualification. Finally we apply our results to the bilevel program.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-020-00907-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Constraining ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Qualifications ; Real Functions</subject><ispartof>Journal of global optimization, 2020-09, Vol.78 (1), p.181-205</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-d605f41866abea6089a747167e5067a9790809de0f7aa2297b62d473d8a1eaeb3</citedby><cites>FETCH-LOGICAL-c358t-d605f41866abea6089a747167e5067a9790809de0f7aa2297b62d473d8a1eaeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-020-00907-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-020-00907-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xu, Mengwei</creatorcontrib><creatorcontrib>Ye, Jane J.</creatorcontrib><title>Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Relaxed constant positive linear dependence constraint qualification (RCPLD) for a system of smooth equalities and inequalities is a constraint qualification that is weaker than the usual constraint qualifications such as Mangasarian Fromovitz constraint qualification and the linear constraint qualification. Moreover RCPLD is known to induce an error bound property. In this paper we extend RCPLD to a very general feasibility system which may include Lipschitz continuous inequality constraints, complementarity constraints and abstract constraints. We show that this RCPLD for the general system is a constraint qualification for the optimality condition in terms of limiting subdifferential and limiting normal cone and it is a sufficient condition for the error bound property under the strict complementarity condition for the complementarity system and Clarke regularity conditions for the inequality constraints and the abstract constraint set. Moreover we introduce and study some sufficient conditions for RCPLD including the relaxed constant rank constraint qualification. Finally we apply our results to the bilevel program.</description><subject>Computer Science</subject><subject>Constraining</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Qualifications</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU9L9DAQxoMouP75Ap4CnquTdJs0RxFfFQRB9Bxmm-kSyaY16cr67Y3WF28yh4Hh98zMw8PYmYALAaAvs4DWtBVIqAAM6Gq3xxai0XUljVD7bAFGNlUDIA7ZUc6vUKi2kQsWnijgjhzvhpgnjBMfh-wn_048-EiYuKORoqPY0cwk9IV622Lwve9w8kPkGB33U-Y4juH_bBr4ygd6p8DHNKwTbvIJO-gxZDr96cfs5d_N8_Vd9fB4e3999VB1ddNOlVPQ9EvRKoUrQlWcoV5qoTQ1oDQabaAF4wh6jSil0Ssl3VLXrkVBSKv6mJ3Pe8vhty3lyb4O2xTLSSvLOiU1iKZQFzO1xkDWx34o3rpSjja-WKW-vG-vtGhrs1S1LAI5C7o05Jyot2PyG0wfVoD9isHOMdgSg_2Owe6KqJ5FucBxTen3lz9UnzmejP4</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Xu, Mengwei</creator><creator>Ye, Jane J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20200901</creationdate><title>Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs</title><author>Xu, Mengwei ; Ye, Jane J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-d605f41866abea6089a747167e5067a9790809de0f7aa2297b62d473d8a1eaeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Science</topic><topic>Constraining</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Qualifications</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mengwei</creatorcontrib><creatorcontrib>Ye, Jane J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI商业信息数据库</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Research Library (ProQuest Database)</collection><collection>Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mengwei</au><au>Ye, Jane J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>78</volume><issue>1</issue><spage>181</spage><epage>205</epage><pages>181-205</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Relaxed constant positive linear dependence constraint qualification (RCPLD) for a system of smooth equalities and inequalities is a constraint qualification that is weaker than the usual constraint qualifications such as Mangasarian Fromovitz constraint qualification and the linear constraint qualification. Moreover RCPLD is known to induce an error bound property. In this paper we extend RCPLD to a very general feasibility system which may include Lipschitz continuous inequality constraints, complementarity constraints and abstract constraints. We show that this RCPLD for the general system is a constraint qualification for the optimality condition in terms of limiting subdifferential and limiting normal cone and it is a sufficient condition for the error bound property under the strict complementarity condition for the complementarity system and Clarke regularity conditions for the inequality constraints and the abstract constraint set. Moreover we introduce and study some sufficient conditions for RCPLD including the relaxed constant rank constraint qualification. Finally we apply our results to the bilevel program.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-020-00907-x</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2020-09, Vol.78 (1), p.181-205 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2608627015 |
source | SpringerLink |
subjects | Computer Science Constraining Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Qualifications Real Functions |
title | Relaxed constant positive linear dependence constraint qualification and its application to bilevel programs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relaxed%20constant%20positive%20linear%20dependence%20constraint%20qualification%20and%20its%20application%20to%20bilevel%20programs&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Xu,%20Mengwei&rft.date=2020-09-01&rft.volume=78&rft.issue=1&rft.spage=181&rft.epage=205&rft.pages=181-205&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-020-00907-x&rft_dat=%3Cgale_proqu%3EA718394632%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608627015&rft_id=info:pmid/&rft_galeid=A718394632&rfr_iscdi=true |