Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices
Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data o...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on biomedical circuits and systems 2021-10, Vol.15 (5), p.926-937 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 937 |
---|---|
container_issue | 5 |
container_start_page | 926 |
container_title | IEEE transactions on biomedical circuits and systems |
container_volume | 15 |
creator | Mayer, Philipp Magno, Michele Benini, Luca |
description | Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s. |
doi_str_mv | 10.1109/TBCAS.2021.3115178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2608556753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547809</ieee_id><sourcerecordid>2608556753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaRK3f6CFIugll3X0vauj6yZNaSAlTuhRSPKsUVivHGnX4H9f-aM59DTDzPMO7_Ai9ImSKaVEXz1-m88WU0YYnXJKJa2bN-icakEqrTV5u-85q4QU8gxd5PxMiFRMs_fojAsptVL8HG2ue0irXfU75jCELeCZLyUMO_wAPq76Mow9rvBNimv8K_QwBI-PGnxr0xbyEPoVHiJerG0a8AK6tlqMebCht64D_AdsOjTfYRs85A_oXWu7DB9PdYKebq4f57fV3f2Pn_PZXeW5lkO1XLZCAKPLWjTtwTbjnDoQzjeMKAdMg_OKWCudoL5mjDndurYmwnqpHZ-gy-PdTYovY7Fp1iF76DrbQxyzYbJWSnJOSEG__oc-xzH1xZ1hijRSqrqAE8SOlE8x5wSt2aRQft4ZSsw-D3PIw-zzMKc8iujL6fTo1rB8lfwLoACfj0AAgNe1lqJuiOZ_Aa8rjx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608556753</pqid></control><display><type>article</type><title>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Mayer, Philipp ; Magno, Michele ; Benini, Luca</creator><creatorcontrib>Mayer, Philipp ; Magno, Michele ; Benini, Luca</creatorcontrib><description>Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2021.3115178</identifier><identifier>PMID: 34559663</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Activity recognition ; Circuits ; Context ; Drought ; Electric Power Supplies ; Electronic devices ; Energy ; Energy efficiency ; Energy harvesting ; energy management ; Energy sources ; Energy storage ; Event detection ; Human activity recognition ; Humans ; Internet of Things ; Kinetic energy ; Latency ; Monitoring, Physiologic ; Motion ; Moving object recognition ; Power management ; Rechargeable batteries ; Sensor systems and applications ; Storage requirements ; Wearable computers ; Wearable Electronic Devices ; Wearable technology ; Wrist</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2021-10, Vol.15 (5), p.926-937</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</citedby><cites>FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</cites><orcidid>0000-0003-0368-8923 ; 0000-0002-4554-7937 ; 0000-0001-8068-3806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9547809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34559663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><title>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s.</description><subject>Activity recognition</subject><subject>Circuits</subject><subject>Context</subject><subject>Drought</subject><subject>Electric Power Supplies</subject><subject>Electronic devices</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>energy management</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Event detection</subject><subject>Human activity recognition</subject><subject>Humans</subject><subject>Internet of Things</subject><subject>Kinetic energy</subject><subject>Latency</subject><subject>Monitoring, Physiologic</subject><subject>Motion</subject><subject>Moving object recognition</subject><subject>Power management</subject><subject>Rechargeable batteries</subject><subject>Sensor systems and applications</subject><subject>Storage requirements</subject><subject>Wearable computers</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><subject>Wrist</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1rGzEQhkVpaRK3f6CFIugll3X0vauj6yZNaSAlTuhRSPKsUVivHGnX4H9f-aM59DTDzPMO7_Ai9ImSKaVEXz1-m88WU0YYnXJKJa2bN-icakEqrTV5u-85q4QU8gxd5PxMiFRMs_fojAsptVL8HG2ue0irXfU75jCELeCZLyUMO_wAPq76Mow9rvBNimv8K_QwBI-PGnxr0xbyEPoVHiJerG0a8AK6tlqMebCht64D_AdsOjTfYRs85A_oXWu7DB9PdYKebq4f57fV3f2Pn_PZXeW5lkO1XLZCAKPLWjTtwTbjnDoQzjeMKAdMg_OKWCudoL5mjDndurYmwnqpHZ-gy-PdTYovY7Fp1iF76DrbQxyzYbJWSnJOSEG__oc-xzH1xZ1hijRSqrqAE8SOlE8x5wSt2aRQft4ZSsw-D3PIw-zzMKc8iujL6fTo1rB8lfwLoACfj0AAgNe1lqJuiOZ_Aa8rjx4</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mayer, Philipp</creator><creator>Magno, Michele</creator><creator>Benini, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0001-8068-3806</orcidid></search><sort><creationdate>20211001</creationdate><title>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</title><author>Mayer, Philipp ; Magno, Michele ; Benini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activity recognition</topic><topic>Circuits</topic><topic>Context</topic><topic>Drought</topic><topic>Electric Power Supplies</topic><topic>Electronic devices</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>energy management</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Event detection</topic><topic>Human activity recognition</topic><topic>Humans</topic><topic>Internet of Things</topic><topic>Kinetic energy</topic><topic>Latency</topic><topic>Monitoring, Physiologic</topic><topic>Motion</topic><topic>Moving object recognition</topic><topic>Power management</topic><topic>Rechargeable batteries</topic><topic>Sensor systems and applications</topic><topic>Storage requirements</topic><topic>Wearable computers</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mayer, Philipp</au><au>Magno, Michele</au><au>Benini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>926</spage><epage>937</epage><pages>926-937</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34559663</pmid><doi>10.1109/TBCAS.2021.3115178</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0001-8068-3806</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4545 |
ispartof | IEEE transactions on biomedical circuits and systems, 2021-10, Vol.15 (5), p.926-937 |
issn | 1932-4545 1940-9990 |
language | eng |
recordid | cdi_proquest_journals_2608556753 |
source | IEEE Electronic Library (IEL) |
subjects | Activity recognition Circuits Context Drought Electric Power Supplies Electronic devices Energy Energy efficiency Energy harvesting energy management Energy sources Energy storage Event detection Human activity recognition Humans Internet of Things Kinetic energy Latency Monitoring, Physiologic Motion Moving object recognition Power management Rechargeable batteries Sensor systems and applications Storage requirements Wearable computers Wearable Electronic Devices Wearable technology Wrist |
title | Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Positive%20Activity%20Recognition%20-%20From%20Kinetic%20Energy%20Harvesting%20to%20Smart%20Self-Sustainable%20Wearable%20Devices&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Mayer,%20Philipp&rft.date=2021-10-01&rft.volume=15&rft.issue=5&rft.spage=926&rft.epage=937&rft.pages=926-937&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2021.3115178&rft_dat=%3Cproquest_RIE%3E2608556753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608556753&rft_id=info:pmid/34559663&rft_ieee_id=9547809&rfr_iscdi=true |