Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices

Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical circuits and systems 2021-10, Vol.15 (5), p.926-937
Hauptverfasser: Mayer, Philipp, Magno, Michele, Benini, Luca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 937
container_issue 5
container_start_page 926
container_title IEEE transactions on biomedical circuits and systems
container_volume 15
creator Mayer, Philipp
Magno, Michele
Benini, Luca
description Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s.
doi_str_mv 10.1109/TBCAS.2021.3115178
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2608556753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9547809</ieee_id><sourcerecordid>2608556753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</originalsourceid><addsrcrecordid>eNpdkU1rGzEQhkVpaRK3f6CFIugll3X0vauj6yZNaSAlTuhRSPKsUVivHGnX4H9f-aM59DTDzPMO7_Ai9ImSKaVEXz1-m88WU0YYnXJKJa2bN-icakEqrTV5u-85q4QU8gxd5PxMiFRMs_fojAsptVL8HG2ue0irXfU75jCELeCZLyUMO_wAPq76Mow9rvBNimv8K_QwBI-PGnxr0xbyEPoVHiJerG0a8AK6tlqMebCht64D_AdsOjTfYRs85A_oXWu7DB9PdYKebq4f57fV3f2Pn_PZXeW5lkO1XLZCAKPLWjTtwTbjnDoQzjeMKAdMg_OKWCudoL5mjDndurYmwnqpHZ-gy-PdTYovY7Fp1iF76DrbQxyzYbJWSnJOSEG__oc-xzH1xZ1hijRSqrqAE8SOlE8x5wSt2aRQft4ZSsw-D3PIw-zzMKc8iujL6fTo1rB8lfwLoACfj0AAgNe1lqJuiOZ_Aa8rjx4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608556753</pqid></control><display><type>article</type><title>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</title><source>IEEE Electronic Library (IEL)</source><creator>Mayer, Philipp ; Magno, Michele ; Benini, Luca</creator><creatorcontrib>Mayer, Philipp ; Magno, Michele ; Benini, Luca</creatorcontrib><description>Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s.</description><identifier>ISSN: 1932-4545</identifier><identifier>EISSN: 1940-9990</identifier><identifier>DOI: 10.1109/TBCAS.2021.3115178</identifier><identifier>PMID: 34559663</identifier><identifier>CODEN: ITBCCW</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Activity recognition ; Circuits ; Context ; Drought ; Electric Power Supplies ; Electronic devices ; Energy ; Energy efficiency ; Energy harvesting ; energy management ; Energy sources ; Energy storage ; Event detection ; Human activity recognition ; Humans ; Internet of Things ; Kinetic energy ; Latency ; Monitoring, Physiologic ; Motion ; Moving object recognition ; Power management ; Rechargeable batteries ; Sensor systems and applications ; Storage requirements ; Wearable computers ; Wearable Electronic Devices ; Wearable technology ; Wrist</subject><ispartof>IEEE transactions on biomedical circuits and systems, 2021-10, Vol.15 (5), p.926-937</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</citedby><cites>FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</cites><orcidid>0000-0003-0368-8923 ; 0000-0002-4554-7937 ; 0000-0001-8068-3806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9547809$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9547809$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34559663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><title>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</title><title>IEEE transactions on biomedical circuits and systems</title><addtitle>TBCAS</addtitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><description>Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s.</description><subject>Activity recognition</subject><subject>Circuits</subject><subject>Context</subject><subject>Drought</subject><subject>Electric Power Supplies</subject><subject>Electronic devices</subject><subject>Energy</subject><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>energy management</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Event detection</subject><subject>Human activity recognition</subject><subject>Humans</subject><subject>Internet of Things</subject><subject>Kinetic energy</subject><subject>Latency</subject><subject>Monitoring, Physiologic</subject><subject>Motion</subject><subject>Moving object recognition</subject><subject>Power management</subject><subject>Rechargeable batteries</subject><subject>Sensor systems and applications</subject><subject>Storage requirements</subject><subject>Wearable computers</subject><subject>Wearable Electronic Devices</subject><subject>Wearable technology</subject><subject>Wrist</subject><issn>1932-4545</issn><issn>1940-9990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU1rGzEQhkVpaRK3f6CFIugll3X0vauj6yZNaSAlTuhRSPKsUVivHGnX4H9f-aM59DTDzPMO7_Ai9ImSKaVEXz1-m88WU0YYnXJKJa2bN-icakEqrTV5u-85q4QU8gxd5PxMiFRMs_fojAsptVL8HG2ue0irXfU75jCELeCZLyUMO_wAPq76Mow9rvBNimv8K_QwBI-PGnxr0xbyEPoVHiJerG0a8AK6tlqMebCht64D_AdsOjTfYRs85A_oXWu7DB9PdYKebq4f57fV3f2Pn_PZXeW5lkO1XLZCAKPLWjTtwTbjnDoQzjeMKAdMg_OKWCudoL5mjDndurYmwnqpHZ-gy-PdTYovY7Fp1iF76DrbQxyzYbJWSnJOSEG__oc-xzH1xZ1hijRSqrqAE8SOlE8x5wSt2aRQft4ZSsw-D3PIw-zzMKc8iujL6fTo1rB8lfwLoACfj0AAgNe1lqJuiOZ_Aa8rjx4</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mayer, Philipp</creator><creator>Magno, Michele</creator><creator>Benini, Luca</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0001-8068-3806</orcidid></search><sort><creationdate>20211001</creationdate><title>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</title><author>Mayer, Philipp ; Magno, Michele ; Benini, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-ddf44e21d748f562922331be4bc8206be29ebc60aa5b41c7222b9fbf704ac59b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Activity recognition</topic><topic>Circuits</topic><topic>Context</topic><topic>Drought</topic><topic>Electric Power Supplies</topic><topic>Electronic devices</topic><topic>Energy</topic><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>energy management</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Event detection</topic><topic>Human activity recognition</topic><topic>Humans</topic><topic>Internet of Things</topic><topic>Kinetic energy</topic><topic>Latency</topic><topic>Monitoring, Physiologic</topic><topic>Motion</topic><topic>Moving object recognition</topic><topic>Power management</topic><topic>Rechargeable batteries</topic><topic>Sensor systems and applications</topic><topic>Storage requirements</topic><topic>Wearable computers</topic><topic>Wearable Electronic Devices</topic><topic>Wearable technology</topic><topic>Wrist</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mayer, Philipp</creatorcontrib><creatorcontrib>Magno, Michele</creatorcontrib><creatorcontrib>Benini, Luca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on biomedical circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mayer, Philipp</au><au>Magno, Michele</au><au>Benini, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices</atitle><jtitle>IEEE transactions on biomedical circuits and systems</jtitle><stitle>TBCAS</stitle><addtitle>IEEE Trans Biomed Circuits Syst</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>926</spage><epage>937</epage><pages>926-937</pages><issn>1932-4545</issn><eissn>1940-9990</eissn><coden>ITBCCW</coden><abstract>Wearable, intelligent, and unobtrusive sensor nodes that monitor the human body and the surrounding environment have the potential to create valuable data for preventive human-centric ubiquitous healthcare. To attain this vision of unobtrusiveness, the smart devices have to gather and analyze data over long periods of time without the need for battery recharging or replacement. This article presents a software-configurable kinetic energy harvesting and power management circuit that enables self-sustainable wearable devices. By exploiting the kinetic transducer as an energy source and an activity sensor simultaneously, the proposed circuit provides highly efficient context-aware control features. Its mixed-signal nano-power context awareness allows reaching energy neutrality even in energy-drought periods, thus significantly relaxing the energy storage requirements. Furthermore, the asynchronous sensing approach also doubles as a coarse-grained human activity recognition frontend. Experimental results, using commercial micro-kinetic generators, demonstrate the flexibility and potential of this approach: the circuit achieves a quiescent current of 57 nA and a maximum load current of 300 mA, delivered with a harvesting efficiency of 79%. Based on empirically collected motion data, the system achieves an energy surplus of over 232 mJ per day in a wrist-worn application while executing activity recognition at an accuracy of 89% and a latency of 60 s.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34559663</pmid><doi>10.1109/TBCAS.2021.3115178</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0368-8923</orcidid><orcidid>https://orcid.org/0000-0002-4554-7937</orcidid><orcidid>https://orcid.org/0000-0001-8068-3806</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4545
ispartof IEEE transactions on biomedical circuits and systems, 2021-10, Vol.15 (5), p.926-937
issn 1932-4545
1940-9990
language eng
recordid cdi_proquest_journals_2608556753
source IEEE Electronic Library (IEL)
subjects Activity recognition
Circuits
Context
Drought
Electric Power Supplies
Electronic devices
Energy
Energy efficiency
Energy harvesting
energy management
Energy sources
Energy storage
Event detection
Human activity recognition
Humans
Internet of Things
Kinetic energy
Latency
Monitoring, Physiologic
Motion
Moving object recognition
Power management
Rechargeable batteries
Sensor systems and applications
Storage requirements
Wearable computers
Wearable Electronic Devices
Wearable technology
Wrist
title Energy-Positive Activity Recognition - From Kinetic Energy Harvesting to Smart Self-Sustainable Wearable Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Positive%20Activity%20Recognition%20-%20From%20Kinetic%20Energy%20Harvesting%20to%20Smart%20Self-Sustainable%20Wearable%20Devices&rft.jtitle=IEEE%20transactions%20on%20biomedical%20circuits%20and%20systems&rft.au=Mayer,%20Philipp&rft.date=2021-10-01&rft.volume=15&rft.issue=5&rft.spage=926&rft.epage=937&rft.pages=926-937&rft.issn=1932-4545&rft.eissn=1940-9990&rft.coden=ITBCCW&rft_id=info:doi/10.1109/TBCAS.2021.3115178&rft_dat=%3Cproquest_RIE%3E2608556753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608556753&rft_id=info:pmid/34559663&rft_ieee_id=9547809&rfr_iscdi=true