Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model

In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2022-02, Vol.41 (1), Article 6
Hauptverfasser: dos Santos, Bruna C., Oliva, Sergio M., Rossi, Julio D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 41
creator dos Santos, Bruna C.
Oliva, Sergio M.
Rossi, Julio D.
description In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model.
doi_str_mv 10.1007/s40314-021-01708-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608474761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608474761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmE2P7ThORlRxk5AYgInBcmK7pErsYCcSfXtMi8TGdM7w_efyIXRJ4ZoCyFUqgNOCAKMEqISK7I7QglYgCXBgx2jBGK8IL4GforOUtgBc0qJYoPeXse-mqfMbPNjpI5iEtTfYz4ONXat7rMcxhq9u0FMXfMIuRKxxG-axtwb3ISMrH_y-waZzbk6Zw0Mwtj9HJ073yV781iV6u7t9XT-Qp-f7x_XNE2k5rSdiuRXMWGtNIwvLGqt1pZualaJqnTCVK1smHUgpjGNlUwumWylqYahgVd3UfImuDnPzpZ-zTZPahjn6vFKxEqpCFrKkmWIHqo0hpWidGmN-K-4UBfUjUR0kqixR7SWqXQ7xQyhl2G9s_Bv9T-ob_Zx3Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608474761</pqid></control><display><type>article</type><title>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</title><source>SpringerLink Journals - AutoHoldings</source><creator>dos Santos, Bruna C. ; Oliva, Sergio M. ; Rossi, Julio D.</creator><creatorcontrib>dos Santos, Bruna C. ; Oliva, Sergio M. ; Rossi, Julio D.</creatorcontrib><description>In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01708-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Approximation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Evolution ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Splitting</subject><ispartof>Computational &amp; applied mathematics, 2022-02, Vol.41 (1), Article 6</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</citedby><cites>FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</cites><orcidid>0000-0002-3295-6045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-021-01708-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-021-01708-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>dos Santos, Bruna C.</creatorcontrib><creatorcontrib>Oliva, Sergio M.</creatorcontrib><creatorcontrib>Rossi, Julio D.</creatorcontrib><title>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Evolution</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Splitting</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmE2P7ThORlRxk5AYgInBcmK7pErsYCcSfXtMi8TGdM7w_efyIXRJ4ZoCyFUqgNOCAKMEqISK7I7QglYgCXBgx2jBGK8IL4GforOUtgBc0qJYoPeXse-mqfMbPNjpI5iEtTfYz4ONXat7rMcxhq9u0FMXfMIuRKxxG-axtwb3ISMrH_y-waZzbk6Zw0Mwtj9HJ073yV781iV6u7t9XT-Qp-f7x_XNE2k5rSdiuRXMWGtNIwvLGqt1pZualaJqnTCVK1smHUgpjGNlUwumWylqYahgVd3UfImuDnPzpZ-zTZPahjn6vFKxEqpCFrKkmWIHqo0hpWidGmN-K-4UBfUjUR0kqixR7SWqXQ7xQyhl2G9s_Bv9T-ob_Zx3Xw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>dos Santos, Bruna C.</creator><creator>Oliva, Sergio M.</creator><creator>Rossi, Julio D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3295-6045</orcidid></search><sort><creationdate>20220201</creationdate><title>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</title><author>dos Santos, Bruna C. ; Oliva, Sergio M. ; Rossi, Julio D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Evolution</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Bruna C.</creatorcontrib><creatorcontrib>Oliva, Sergio M.</creatorcontrib><creatorcontrib>Rossi, Julio D.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Bruna C.</au><au>Oliva, Sergio M.</au><au>Rossi, Julio D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>41</volume><issue>1</issue><artnum>6</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01708-y</doi><orcidid>https://orcid.org/0000-0002-3295-6045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2022-02, Vol.41 (1), Article 6
issn 2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_2608474761
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Applied physics
Approximation
Computational mathematics
Computational Mathematics and Numerical Analysis
Evolution
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical models
Mathematics
Mathematics and Statistics
Numerical methods
Splitting
title Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splitting%20methods%20and%20numerical%20approximations%20for%20a%20coupled%20local/nonlocal%20diffusion%20model&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=dos%20Santos,%20Bruna%20C.&rft.date=2022-02-01&rft.volume=41&rft.issue=1&rft.artnum=6&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01708-y&rft_dat=%3Cproquest_cross%3E2608474761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608474761&rft_id=info:pmid/&rfr_iscdi=true