Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model
In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2022-02, Vol.41 (1), Article 6 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Computational & applied mathematics |
container_volume | 41 |
creator | dos Santos, Bruna C. Oliva, Sergio M. Rossi, Julio D. |
description | In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model. |
doi_str_mv | 10.1007/s40314-021-01708-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608474761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608474761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmE2P7ThORlRxk5AYgInBcmK7pErsYCcSfXtMi8TGdM7w_efyIXRJ4ZoCyFUqgNOCAKMEqISK7I7QglYgCXBgx2jBGK8IL4GforOUtgBc0qJYoPeXse-mqfMbPNjpI5iEtTfYz4ONXat7rMcxhq9u0FMXfMIuRKxxG-axtwb3ISMrH_y-waZzbk6Zw0Mwtj9HJ073yV781iV6u7t9XT-Qp-f7x_XNE2k5rSdiuRXMWGtNIwvLGqt1pZualaJqnTCVK1smHUgpjGNlUwumWylqYahgVd3UfImuDnPzpZ-zTZPahjn6vFKxEqpCFrKkmWIHqo0hpWidGmN-K-4UBfUjUR0kqixR7SWqXQ7xQyhl2G9s_Bv9T-ob_Zx3Xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608474761</pqid></control><display><type>article</type><title>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</title><source>SpringerLink Journals - AutoHoldings</source><creator>dos Santos, Bruna C. ; Oliva, Sergio M. ; Rossi, Julio D.</creator><creatorcontrib>dos Santos, Bruna C. ; Oliva, Sergio M. ; Rossi, Julio D.</creatorcontrib><description>In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-021-01708-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Approximation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Evolution ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Numerical methods ; Splitting</subject><ispartof>Computational & applied mathematics, 2022-02, Vol.41 (1), Article 6</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2021</rights><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</citedby><cites>FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</cites><orcidid>0000-0002-3295-6045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-021-01708-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-021-01708-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>dos Santos, Bruna C.</creatorcontrib><creatorcontrib>Oliva, Sergio M.</creatorcontrib><creatorcontrib>Rossi, Julio D.</creatorcontrib><title>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Evolution</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical methods</subject><subject>Splitting</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmE2P7ThORlRxk5AYgInBcmK7pErsYCcSfXtMi8TGdM7w_efyIXRJ4ZoCyFUqgNOCAKMEqISK7I7QglYgCXBgx2jBGK8IL4GforOUtgBc0qJYoPeXse-mqfMbPNjpI5iEtTfYz4ONXat7rMcxhq9u0FMXfMIuRKxxG-axtwb3ISMrH_y-waZzbk6Zw0Mwtj9HJ073yV781iV6u7t9XT-Qp-f7x_XNE2k5rSdiuRXMWGtNIwvLGqt1pZualaJqnTCVK1smHUgpjGNlUwumWylqYahgVd3UfImuDnPzpZ-zTZPahjn6vFKxEqpCFrKkmWIHqo0hpWidGmN-K-4UBfUjUR0kqixR7SWqXQ7xQyhl2G9s_Bv9T-ob_Zx3Xw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>dos Santos, Bruna C.</creator><creator>Oliva, Sergio M.</creator><creator>Rossi, Julio D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3295-6045</orcidid></search><sort><creationdate>20220201</creationdate><title>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</title><author>dos Santos, Bruna C. ; Oliva, Sergio M. ; Rossi, Julio D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e3e52deeedb74e2beaa8ab92658cf5d8f6c27f0775df26b952ac7595d15289b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Evolution</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical methods</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>dos Santos, Bruna C.</creatorcontrib><creatorcontrib>Oliva, Sergio M.</creatorcontrib><creatorcontrib>Rossi, Julio D.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>dos Santos, Bruna C.</au><au>Oliva, Sergio M.</au><au>Rossi, Julio D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>41</volume><issue>1</issue><artnum>6</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper, we study a splitting approach and a numerical method to approximate solutions to an evolution problem that couples local and nonlocal diffusion operators. The method proposed here takes advantage of the fact that we can show a splitting structure for our evolution equation allowing us to deal with the local and nonlocal parts of the equation separately. This has the capability of being quite flexible, allowing, for example, to consider different meshes in the local and in the nonlocal region. We prove convergence of the method and include some numerical experiments that show some qualitative features of the model.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-021-01708-y</doi><orcidid>https://orcid.org/0000-0002-3295-6045</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2238-3603 |
ispartof | Computational & applied mathematics, 2022-02, Vol.41 (1), Article 6 |
issn | 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_2608474761 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Applied physics Approximation Computational mathematics Computational Mathematics and Numerical Analysis Evolution Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematical models Mathematics Mathematics and Statistics Numerical methods Splitting |
title | Splitting methods and numerical approximations for a coupled local/nonlocal diffusion model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Splitting%20methods%20and%20numerical%20approximations%20for%20a%20coupled%20local/nonlocal%20diffusion%20model&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=dos%20Santos,%20Bruna%20C.&rft.date=2022-02-01&rft.volume=41&rft.issue=1&rft.artnum=6&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-021-01708-y&rft_dat=%3Cproquest_cross%3E2608474761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608474761&rft_id=info:pmid/&rfr_iscdi=true |