Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration

Autonomous robot operation in unstructured and unknown environments requires efficient techniques for mapping and exploration using streaming range and visual observations. Information-based exploration techniques, such as Cauchy-Schwarz quadratic mutual information (CSQMI) and fast Shannon mutual i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Asgharivaskasi, Arash, Atanasov, Nikolay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Asgharivaskasi, Arash
Atanasov, Nikolay
description Autonomous robot operation in unstructured and unknown environments requires efficient techniques for mapping and exploration using streaming range and visual observations. Information-based exploration techniques, such as Cauchy-Schwarz quadratic mutual information (CSQMI) and fast Shannon mutual information (FSMI), have successfully achieved active binary occupancy mapping with range measurements. However, as we envision robots performing complex tasks specified with semantically meaningful concepts, it is necessary to capture semantics in the measurements, map representation, and exploration objective. This work presents Semantic octree mapping and Shannon Mutual Information (SSMI) computation for robot exploration. We develop a Bayesian multi-class mapping algorithm based on an octree data structure, where each voxel maintains a categorical distribution over semantic classes. We derive a closed-form efficiently-computable lower bound of the Shannon mutual information between a multi-class octomap and a set of range-category measurements using semantic run-length encoding of the sensor rays. The bound allows rapid evaluation of many potential robot trajectories for autonomous exploration and mapping. We compare our method against state-of-the-art exploration techniques and apply it in a variety of simulated and real-world experiments.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2608261634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608261634</sourcerecordid><originalsourceid>FETCH-proquest_journals_26082616343</originalsourceid><addsrcrecordid>eNqNyt0KgjAcBfARBEn5Dn_oWpibLu_FqAsJ0ovuZNksRbe1D-jxk-oBujqH3zkLFBBK4yhLCFmh0NoBY0zYjqQpDdClEhOXrm_h1NZGCCi51r28A5c3qB5cSiWh9M7zEY6yU2birp8pV5P27ttnhbO6KgfFS4_KfHSDlh0frQh_uUbbfVHnh0gb9fTCumZQ3sh5agjDGWExown97_UGpT9CJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608261634</pqid></control><display><type>article</type><title>Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration</title><source>Free E- Journals</source><creator>Asgharivaskasi, Arash ; Atanasov, Nikolay</creator><creatorcontrib>Asgharivaskasi, Arash ; Atanasov, Nikolay</creatorcontrib><description>Autonomous robot operation in unstructured and unknown environments requires efficient techniques for mapping and exploration using streaming range and visual observations. Information-based exploration techniques, such as Cauchy-Schwarz quadratic mutual information (CSQMI) and fast Shannon mutual information (FSMI), have successfully achieved active binary occupancy mapping with range measurements. However, as we envision robots performing complex tasks specified with semantically meaningful concepts, it is necessary to capture semantics in the measurements, map representation, and exploration objective. This work presents Semantic octree mapping and Shannon Mutual Information (SSMI) computation for robot exploration. We develop a Bayesian multi-class mapping algorithm based on an octree data structure, where each voxel maintains a categorical distribution over semantic classes. We derive a closed-form efficiently-computable lower bound of the Shannon mutual information between a multi-class octomap and a set of range-category measurements using semantic run-length encoding of the sensor rays. The bound allows rapid evaluation of many potential robot trajectories for autonomous exploration and mapping. We compare our method against state-of-the-art exploration techniques and apply it in a variety of simulated and real-world experiments.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Autonomy ; Bayesian analysis ; Codes ; Data structures ; Edge computing ; Exploration ; Lower bounds ; Mapping ; Occupancy ; Octrees ; Representations ; Robots ; Segmentation ; Semantics ; Task complexity ; Unknown environments</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Asgharivaskasi, Arash</creatorcontrib><creatorcontrib>Atanasov, Nikolay</creatorcontrib><title>Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration</title><title>arXiv.org</title><description>Autonomous robot operation in unstructured and unknown environments requires efficient techniques for mapping and exploration using streaming range and visual observations. Information-based exploration techniques, such as Cauchy-Schwarz quadratic mutual information (CSQMI) and fast Shannon mutual information (FSMI), have successfully achieved active binary occupancy mapping with range measurements. However, as we envision robots performing complex tasks specified with semantically meaningful concepts, it is necessary to capture semantics in the measurements, map representation, and exploration objective. This work presents Semantic octree mapping and Shannon Mutual Information (SSMI) computation for robot exploration. We develop a Bayesian multi-class mapping algorithm based on an octree data structure, where each voxel maintains a categorical distribution over semantic classes. We derive a closed-form efficiently-computable lower bound of the Shannon mutual information between a multi-class octomap and a set of range-category measurements using semantic run-length encoding of the sensor rays. The bound allows rapid evaluation of many potential robot trajectories for autonomous exploration and mapping. We compare our method against state-of-the-art exploration techniques and apply it in a variety of simulated and real-world experiments.</description><subject>Algorithms</subject><subject>Autonomy</subject><subject>Bayesian analysis</subject><subject>Codes</subject><subject>Data structures</subject><subject>Edge computing</subject><subject>Exploration</subject><subject>Lower bounds</subject><subject>Mapping</subject><subject>Occupancy</subject><subject>Octrees</subject><subject>Representations</subject><subject>Robots</subject><subject>Segmentation</subject><subject>Semantics</subject><subject>Task complexity</subject><subject>Unknown environments</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyt0KgjAcBfARBEn5Dn_oWpibLu_FqAsJ0ovuZNksRbe1D-jxk-oBujqH3zkLFBBK4yhLCFmh0NoBY0zYjqQpDdClEhOXrm_h1NZGCCi51r28A5c3qB5cSiWh9M7zEY6yU2birp8pV5P27ttnhbO6KgfFS4_KfHSDlh0frQh_uUbbfVHnh0gb9fTCumZQ3sh5agjDGWExown97_UGpT9CJg</recordid><startdate>20230225</startdate><enddate>20230225</enddate><creator>Asgharivaskasi, Arash</creator><creator>Atanasov, Nikolay</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230225</creationdate><title>Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration</title><author>Asgharivaskasi, Arash ; Atanasov, Nikolay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26082616343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Autonomy</topic><topic>Bayesian analysis</topic><topic>Codes</topic><topic>Data structures</topic><topic>Edge computing</topic><topic>Exploration</topic><topic>Lower bounds</topic><topic>Mapping</topic><topic>Occupancy</topic><topic>Octrees</topic><topic>Representations</topic><topic>Robots</topic><topic>Segmentation</topic><topic>Semantics</topic><topic>Task complexity</topic><topic>Unknown environments</topic><toplevel>online_resources</toplevel><creatorcontrib>Asgharivaskasi, Arash</creatorcontrib><creatorcontrib>Atanasov, Nikolay</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asgharivaskasi, Arash</au><au>Atanasov, Nikolay</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration</atitle><jtitle>arXiv.org</jtitle><date>2023-02-25</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Autonomous robot operation in unstructured and unknown environments requires efficient techniques for mapping and exploration using streaming range and visual observations. Information-based exploration techniques, such as Cauchy-Schwarz quadratic mutual information (CSQMI) and fast Shannon mutual information (FSMI), have successfully achieved active binary occupancy mapping with range measurements. However, as we envision robots performing complex tasks specified with semantically meaningful concepts, it is necessary to capture semantics in the measurements, map representation, and exploration objective. This work presents Semantic octree mapping and Shannon Mutual Information (SSMI) computation for robot exploration. We develop a Bayesian multi-class mapping algorithm based on an octree data structure, where each voxel maintains a categorical distribution over semantic classes. We derive a closed-form efficiently-computable lower bound of the Shannon mutual information between a multi-class octomap and a set of range-category measurements using semantic run-length encoding of the sensor rays. The bound allows rapid evaluation of many potential robot trajectories for autonomous exploration and mapping. We compare our method against state-of-the-art exploration techniques and apply it in a variety of simulated and real-world experiments.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2608261634
source Free E- Journals
subjects Algorithms
Autonomy
Bayesian analysis
Codes
Data structures
Edge computing
Exploration
Lower bounds
Mapping
Occupancy
Octrees
Representations
Robots
Segmentation
Semantics
Task complexity
Unknown environments
title Semantic OcTree Mapping and Shannon Mutual Information Computation for Robot Exploration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A26%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Semantic%20OcTree%20Mapping%20and%20Shannon%20Mutual%20Information%20Computation%20for%20Robot%20Exploration&rft.jtitle=arXiv.org&rft.au=Asgharivaskasi,%20Arash&rft.date=2023-02-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2608261634%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608261634&rft_id=info:pmid/&rfr_iscdi=true