Defects inducing anomalous exciton kinetics in monolayer WS2
Two-dimensional (2D) transition metal dichalcogenide (TMD) has emerged as an effective optoelectronics material due to its novel optical properties. Understanding the role of defects in exciton kinetics is crucial for achieving high-efficiency TMD devices. Here, we observe defects induced anomalous...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-02, Vol.15 (2), p.1616-1622 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional (2D) transition metal dichalcogenide (TMD) has emerged as an effective optoelectronics material due to its novel optical properties. Understanding the role of defects in exciton kinetics is crucial for achieving high-efficiency TMD devices. Here, we observe defects induced anomalous power dependence exciton dynamics and spatial distribution in hexagonal heterogeneous WS
2
. With transient absorption microscopy study, we illustrate that these phenomena originate from the competition between radiative and defect-related non-radiative decays. To understand the physics behind this, a decay model is introduced with two defect-related channels, which demonstrates that more excitons decay through non-radiative channels in the dark region than the bright region. Our work reveals the mechanisms of anomalous exciton kinetics by defects and is instrumental for understanding and exploiting excitonic states in emerging 2D semiconductors. |
---|---|
ISSN: | 1998-0124 1998-0000 |
DOI: | 10.1007/s12274-021-3710-7 |