Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer
Endowing bilayer transition-metal dichalcogenides (TMDs) with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom (DOFs). However, effectively inducing and tuning the magnetic interaction of bilayer TMDs are still challenges. Herein, we report a strat...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-02, Vol.15 (2), p.881-888 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 888 |
---|---|
container_issue | 2 |
container_start_page | 881 |
container_title | Nano research |
container_volume | 15 |
creator | Duan, Hengli Li, Guinan Tan, Hao Wang, Chao Li, Qian Liu, Chuanchuan Yin, Yuewei Li, Xiaoguang Qi, Zeming Yan, Wensheng |
description | Endowing bilayer transition-metal dichalcogenides (TMDs) with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom (DOFs). However, effectively inducing and tuning the magnetic interaction of bilayer TMDs are still challenges. Herein, we report a strategy to tune the interlayer exchange interaction of centimeter-scale MoS
2
bilayer with substitutional doping of Co ion, by introducing sulfur vacancy (V
S
) to modulate the interlayer electronic coupling. This strategy could transform the interlayer exchange interaction from antiferromagnetism (AFM) to ferromagnetism (FM), as revealed by the magnetic measurements. Experimental characterizations and theoretical calculations indicate that the enhanced magnetization is mainly because the hybridization of Co 3d band and V
S
-induced impurity band alters the forms of interlayer orbital hybridizations between the partial Co atoms in upper and lower layers, and also enhances the intralayer FM. Our work paves the way for tuning the interlayer exchange interaction with defects and could be extended to other two-dimensional (2D) magnetic materials. |
doi_str_mv | 10.1007/s12274-021-3569-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608260885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608260885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2abf63fa86b365839cb49ba0e115408db75fcd2c7cf9917ea9bc97d3cd629fc03</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC52g-dpPNUYpfUPHQeg7JbFK2bLM12RX6701dxZMDwwzM-7wDL0LXlNxSQuRdoozJEhNGMa-EwvIEzahSNSa5Tn93yspzdJHSlhDBaFnP0Ho1dn6M-NOACXDAwxiM7VzRhsHFzhxcLHZmE9zQQgH9uO_asMnHAlwY2p3LIpzAZOC1X7HCtt_IJTrzpkvu6mfO0fvjw3rxjJdvTy-L-yUGTsWAmbFecG9qYbmoaq7Alsoa4iitSlI3VlYeGgYSvFJUOqMsKNlwaARTHgifo5vJdx_7j9GlQW_7MYb8UjNB6mPXVVbRSQWxTyk6r_ex3Zl40JToY3h6Ck_n8PQxPC0zwyYmZW3YuPjn_D_0BRhrcxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608260885</pqid></control><display><type>article</type><title>Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer</title><source>Springer Journals</source><creator>Duan, Hengli ; Li, Guinan ; Tan, Hao ; Wang, Chao ; Li, Qian ; Liu, Chuanchuan ; Yin, Yuewei ; Li, Xiaoguang ; Qi, Zeming ; Yan, Wensheng</creator><creatorcontrib>Duan, Hengli ; Li, Guinan ; Tan, Hao ; Wang, Chao ; Li, Qian ; Liu, Chuanchuan ; Yin, Yuewei ; Li, Xiaoguang ; Qi, Zeming ; Yan, Wensheng</creatorcontrib><description>Endowing bilayer transition-metal dichalcogenides (TMDs) with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom (DOFs). However, effectively inducing and tuning the magnetic interaction of bilayer TMDs are still challenges. Herein, we report a strategy to tune the interlayer exchange interaction of centimeter-scale MoS
2
bilayer with substitutional doping of Co ion, by introducing sulfur vacancy (V
S
) to modulate the interlayer electronic coupling. This strategy could transform the interlayer exchange interaction from antiferromagnetism (AFM) to ferromagnetism (FM), as revealed by the magnetic measurements. Experimental characterizations and theoretical calculations indicate that the enhanced magnetization is mainly because the hybridization of Co 3d band and V
S
-induced impurity band alters the forms of interlayer orbital hybridizations between the partial Co atoms in upper and lower layers, and also enhances the intralayer FM. Our work paves the way for tuning the interlayer exchange interaction with defects and could be extended to other two-dimensional (2D) magnetic materials.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3569-7</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Antiferromagnetism ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Coupling ; Exchanging ; Ferromagnetism ; Hybridization ; Interlayers ; Magnetic materials ; Magnetic measurement ; Magnetism ; Materials Science ; Molybdenum disulfide ; Nanotechnology ; Research Article ; Sulfur ; Transition metal compounds ; Tuning ; Vacancies</subject><ispartof>Nano research, 2022-02, Vol.15 (2), p.881-888</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2abf63fa86b365839cb49ba0e115408db75fcd2c7cf9917ea9bc97d3cd629fc03</citedby><cites>FETCH-LOGICAL-c316t-2abf63fa86b365839cb49ba0e115408db75fcd2c7cf9917ea9bc97d3cd629fc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3569-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3569-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Duan, Hengli</creatorcontrib><creatorcontrib>Li, Guinan</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Liu, Chuanchuan</creatorcontrib><creatorcontrib>Yin, Yuewei</creatorcontrib><creatorcontrib>Li, Xiaoguang</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><title>Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Endowing bilayer transition-metal dichalcogenides (TMDs) with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom (DOFs). However, effectively inducing and tuning the magnetic interaction of bilayer TMDs are still challenges. Herein, we report a strategy to tune the interlayer exchange interaction of centimeter-scale MoS
2
bilayer with substitutional doping of Co ion, by introducing sulfur vacancy (V
S
) to modulate the interlayer electronic coupling. This strategy could transform the interlayer exchange interaction from antiferromagnetism (AFM) to ferromagnetism (FM), as revealed by the magnetic measurements. Experimental characterizations and theoretical calculations indicate that the enhanced magnetization is mainly because the hybridization of Co 3d band and V
S
-induced impurity band alters the forms of interlayer orbital hybridizations between the partial Co atoms in upper and lower layers, and also enhances the intralayer FM. Our work paves the way for tuning the interlayer exchange interaction with defects and could be extended to other two-dimensional (2D) magnetic materials.</description><subject>Antiferromagnetism</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Coupling</subject><subject>Exchanging</subject><subject>Ferromagnetism</subject><subject>Hybridization</subject><subject>Interlayers</subject><subject>Magnetic materials</subject><subject>Magnetic measurement</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Research Article</subject><subject>Sulfur</subject><subject>Transition metal compounds</subject><subject>Tuning</subject><subject>Vacancies</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuC52g-dpPNUYpfUPHQeg7JbFK2bLM12RX6701dxZMDwwzM-7wDL0LXlNxSQuRdoozJEhNGMa-EwvIEzahSNSa5Tn93yspzdJHSlhDBaFnP0Ho1dn6M-NOACXDAwxiM7VzRhsHFzhxcLHZmE9zQQgH9uO_asMnHAlwY2p3LIpzAZOC1X7HCtt_IJTrzpkvu6mfO0fvjw3rxjJdvTy-L-yUGTsWAmbFecG9qYbmoaq7Alsoa4iitSlI3VlYeGgYSvFJUOqMsKNlwaARTHgifo5vJdx_7j9GlQW_7MYb8UjNB6mPXVVbRSQWxTyk6r_ex3Zl40JToY3h6Ck_n8PQxPC0zwyYmZW3YuPjn_D_0BRhrcxM</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Duan, Hengli</creator><creator>Li, Guinan</creator><creator>Tan, Hao</creator><creator>Wang, Chao</creator><creator>Li, Qian</creator><creator>Liu, Chuanchuan</creator><creator>Yin, Yuewei</creator><creator>Li, Xiaoguang</creator><creator>Qi, Zeming</creator><creator>Yan, Wensheng</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220201</creationdate><title>Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer</title><author>Duan, Hengli ; Li, Guinan ; Tan, Hao ; Wang, Chao ; Li, Qian ; Liu, Chuanchuan ; Yin, Yuewei ; Li, Xiaoguang ; Qi, Zeming ; Yan, Wensheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2abf63fa86b365839cb49ba0e115408db75fcd2c7cf9917ea9bc97d3cd629fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antiferromagnetism</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Coupling</topic><topic>Exchanging</topic><topic>Ferromagnetism</topic><topic>Hybridization</topic><topic>Interlayers</topic><topic>Magnetic materials</topic><topic>Magnetic measurement</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Research Article</topic><topic>Sulfur</topic><topic>Transition metal compounds</topic><topic>Tuning</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duan, Hengli</creatorcontrib><creatorcontrib>Li, Guinan</creatorcontrib><creatorcontrib>Tan, Hao</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Li, Qian</creatorcontrib><creatorcontrib>Liu, Chuanchuan</creatorcontrib><creatorcontrib>Yin, Yuewei</creatorcontrib><creatorcontrib>Li, Xiaoguang</creatorcontrib><creatorcontrib>Qi, Zeming</creatorcontrib><creatorcontrib>Yan, Wensheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duan, Hengli</au><au>Li, Guinan</au><au>Tan, Hao</au><au>Wang, Chao</au><au>Li, Qian</au><au>Liu, Chuanchuan</au><au>Yin, Yuewei</au><au>Li, Xiaoguang</au><au>Qi, Zeming</au><au>Yan, Wensheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>881</spage><epage>888</epage><pages>881-888</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Endowing bilayer transition-metal dichalcogenides (TMDs) with tunable magnetism is significant to investigate the coupling of multiple electron degrees of freedom (DOFs). However, effectively inducing and tuning the magnetic interaction of bilayer TMDs are still challenges. Herein, we report a strategy to tune the interlayer exchange interaction of centimeter-scale MoS
2
bilayer with substitutional doping of Co ion, by introducing sulfur vacancy (V
S
) to modulate the interlayer electronic coupling. This strategy could transform the interlayer exchange interaction from antiferromagnetism (AFM) to ferromagnetism (FM), as revealed by the magnetic measurements. Experimental characterizations and theoretical calculations indicate that the enhanced magnetization is mainly because the hybridization of Co 3d band and V
S
-induced impurity band alters the forms of interlayer orbital hybridizations between the partial Co atoms in upper and lower layers, and also enhances the intralayer FM. Our work paves the way for tuning the interlayer exchange interaction with defects and could be extended to other two-dimensional (2D) magnetic materials.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3569-7</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-02, Vol.15 (2), p.881-888 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2608260885 |
source | Springer Journals |
subjects | Antiferromagnetism Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Coupling Exchanging Ferromagnetism Hybridization Interlayers Magnetic materials Magnetic measurement Magnetism Materials Science Molybdenum disulfide Nanotechnology Research Article Sulfur Transition metal compounds Tuning Vacancies |
title | Sulfur-vacancy-tunable interlayer magnetic coupling in centimeter-scale MoS2 bilayer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfur-vacancy-tunable%20interlayer%20magnetic%20coupling%20in%20centimeter-scale%20MoS2%20bilayer&rft.jtitle=Nano%20research&rft.au=Duan,%20Hengli&rft.date=2022-02-01&rft.volume=15&rft.issue=2&rft.spage=881&rft.epage=888&rft.pages=881-888&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3569-7&rft_dat=%3Cproquest_cross%3E2608260885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608260885&rft_id=info:pmid/&rfr_iscdi=true |