In-situ selective surface engineering of graphene micro-supercapacitor chips
Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabric...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-02, Vol.15 (2), p.1492-1499 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1499 |
---|---|
container_issue | 2 |
container_start_page | 1492 |
container_title | Nano research |
container_volume | 15 |
creator | Chen, Yiming Guo, Minghao Xu, Lin Cai, Yuyang Tian, Xiaocong Liao, Xiaobin Wang, Zhaoyang Meng, Jiashen Hong, Xufeng Mai, Liqiang |
description | Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an
in-situ
surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm
−2
. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices. |
doi_str_mv | 10.1007/s12274-021-3693-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608260850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608260850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMmo_mKItfsOBFzyHNTnez7LY1aQX_vS1VPDkwzBzedz4eQq6B3wLn5i6DEEYyLoAV2hZMnpAFWFsyPsbpbw9CnpOLnPecawGyXJD1S8Ny7Aea8YChj59I85BqH5Bis40NYorNlrY13Sbf7bBBeowhtSwPHabgOx9i3yYadrHLl-Ss9oeMVz91Sd4fH95Wz2z9-vSyul-zUIDumdDSltoqz6WuPYQKrRFYCQ1SCVmi1UZVBkCVGFRd2bDZVEYLEUIhrTKqWJKbeW6X2o8Bc-_27ZCacaUTmpdTKj6qYFaN5-acsHZdikefvhxwN0FzMzQ3QnMTNCdHj5g9uZv-xvQ3-X_TN_oTbs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608260850</pqid></control><display><type>article</type><title>In-situ selective surface engineering of graphene micro-supercapacitor chips</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Yiming ; Guo, Minghao ; Xu, Lin ; Cai, Yuyang ; Tian, Xiaocong ; Liao, Xiaobin ; Wang, Zhaoyang ; Meng, Jiashen ; Hong, Xufeng ; Mai, Liqiang</creator><creatorcontrib>Chen, Yiming ; Guo, Minghao ; Xu, Lin ; Cai, Yuyang ; Tian, Xiaocong ; Liao, Xiaobin ; Wang, Zhaoyang ; Meng, Jiashen ; Hong, Xufeng ; Mai, Liqiang</creatorcontrib><description>Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an
in-situ
surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm
−2
. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3693-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Capacitance ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy storage ; Extrusion ; Flux density ; Graphene ; Inks ; Materials Science ; Microelectrodes ; Nanotechnology ; Polypyrroles ; Research Article ; Selective surfaces ; Supercapacitors ; Three dimensional printing</subject><ispartof>Nano research, 2022-02, Vol.15 (2), p.1492-1499</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</citedby><cites>FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3693-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3693-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Guo, Minghao</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Cai, Yuyang</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Liao, Xiaobin</creatorcontrib><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Meng, Jiashen</creatorcontrib><creatorcontrib>Hong, Xufeng</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><title>In-situ selective surface engineering of graphene micro-supercapacitor chips</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an
in-situ
surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm
−2
. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Capacitance</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Extrusion</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Inks</subject><subject>Materials Science</subject><subject>Microelectrodes</subject><subject>Nanotechnology</subject><subject>Polypyrroles</subject><subject>Research Article</subject><subject>Selective surfaces</subject><subject>Supercapacitors</subject><subject>Three dimensional printing</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMmo_mKItfsOBFzyHNTnez7LY1aQX_vS1VPDkwzBzedz4eQq6B3wLn5i6DEEYyLoAV2hZMnpAFWFsyPsbpbw9CnpOLnPecawGyXJD1S8Ny7Aea8YChj59I85BqH5Bis40NYorNlrY13Sbf7bBBeowhtSwPHabgOx9i3yYadrHLl-Ss9oeMVz91Sd4fH95Wz2z9-vSyul-zUIDumdDSltoqz6WuPYQKrRFYCQ1SCVmi1UZVBkCVGFRd2bDZVEYLEUIhrTKqWJKbeW6X2o8Bc-_27ZCacaUTmpdTKj6qYFaN5-acsHZdikefvhxwN0FzMzQ3QnMTNCdHj5g9uZv-xvQ3-X_TN_oTbs0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Yiming</creator><creator>Guo, Minghao</creator><creator>Xu, Lin</creator><creator>Cai, Yuyang</creator><creator>Tian, Xiaocong</creator><creator>Liao, Xiaobin</creator><creator>Wang, Zhaoyang</creator><creator>Meng, Jiashen</creator><creator>Hong, Xufeng</creator><creator>Mai, Liqiang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220201</creationdate><title>In-situ selective surface engineering of graphene micro-supercapacitor chips</title><author>Chen, Yiming ; Guo, Minghao ; Xu, Lin ; Cai, Yuyang ; Tian, Xiaocong ; Liao, Xiaobin ; Wang, Zhaoyang ; Meng, Jiashen ; Hong, Xufeng ; Mai, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Capacitance</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Extrusion</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Inks</topic><topic>Materials Science</topic><topic>Microelectrodes</topic><topic>Nanotechnology</topic><topic>Polypyrroles</topic><topic>Research Article</topic><topic>Selective surfaces</topic><topic>Supercapacitors</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Guo, Minghao</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Cai, Yuyang</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Liao, Xiaobin</creatorcontrib><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Meng, Jiashen</creatorcontrib><creatorcontrib>Hong, Xufeng</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yiming</au><au>Guo, Minghao</au><au>Xu, Lin</au><au>Cai, Yuyang</au><au>Tian, Xiaocong</au><au>Liao, Xiaobin</au><au>Wang, Zhaoyang</au><au>Meng, Jiashen</au><au>Hong, Xufeng</au><au>Mai, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ selective surface engineering of graphene micro-supercapacitor chips</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>1492</spage><epage>1499</epage><pages>1492-1499</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an
in-situ
surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm
−2
. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3693-4</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-02, Vol.15 (2), p.1492-1499 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2608260850 |
source | Springer Nature - Complete Springer Journals |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Capacitance Chemistry and Materials Science Condensed Matter Physics Electrochemistry Energy storage Extrusion Flux density Graphene Inks Materials Science Microelectrodes Nanotechnology Polypyrroles Research Article Selective surfaces Supercapacitors Three dimensional printing |
title | In-situ selective surface engineering of graphene micro-supercapacitor chips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20selective%20surface%20engineering%20of%20graphene%20micro-supercapacitor%20chips&rft.jtitle=Nano%20research&rft.au=Chen,%20Yiming&rft.date=2022-02-01&rft.volume=15&rft.issue=2&rft.spage=1492&rft.epage=1499&rft.pages=1492-1499&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3693-4&rft_dat=%3Cproquest_cross%3E2608260850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608260850&rft_id=info:pmid/&rfr_iscdi=true |