In-situ selective surface engineering of graphene micro-supercapacitor chips

Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2022-02, Vol.15 (2), p.1492-1499
Hauptverfasser: Chen, Yiming, Guo, Minghao, Xu, Lin, Cai, Yuyang, Tian, Xiaocong, Liao, Xiaobin, Wang, Zhaoyang, Meng, Jiashen, Hong, Xufeng, Mai, Liqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1499
container_issue 2
container_start_page 1492
container_title Nano research
container_volume 15
creator Chen, Yiming
Guo, Minghao
Xu, Lin
Cai, Yuyang
Tian, Xiaocong
Liao, Xiaobin
Wang, Zhaoyang
Meng, Jiashen
Hong, Xufeng
Mai, Liqiang
description Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm −2 . These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.
doi_str_mv 10.1007/s12274-021-3693-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608260850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608260850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMmo_mKItfsOBFzyHNTnez7LY1aQX_vS1VPDkwzBzedz4eQq6B3wLn5i6DEEYyLoAV2hZMnpAFWFsyPsbpbw9CnpOLnPecawGyXJD1S8Ny7Aea8YChj59I85BqH5Bis40NYorNlrY13Sbf7bBBeowhtSwPHabgOx9i3yYadrHLl-Ss9oeMVz91Sd4fH95Wz2z9-vSyul-zUIDumdDSltoqz6WuPYQKrRFYCQ1SCVmi1UZVBkCVGFRd2bDZVEYLEUIhrTKqWJKbeW6X2o8Bc-_27ZCacaUTmpdTKj6qYFaN5-acsHZdikefvhxwN0FzMzQ3QnMTNCdHj5g9uZv-xvQ3-X_TN_oTbs0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608260850</pqid></control><display><type>article</type><title>In-situ selective surface engineering of graphene micro-supercapacitor chips</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Yiming ; Guo, Minghao ; Xu, Lin ; Cai, Yuyang ; Tian, Xiaocong ; Liao, Xiaobin ; Wang, Zhaoyang ; Meng, Jiashen ; Hong, Xufeng ; Mai, Liqiang</creator><creatorcontrib>Chen, Yiming ; Guo, Minghao ; Xu, Lin ; Cai, Yuyang ; Tian, Xiaocong ; Liao, Xiaobin ; Wang, Zhaoyang ; Meng, Jiashen ; Hong, Xufeng ; Mai, Liqiang</creatorcontrib><description>Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm −2 . These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3693-4</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Capacitance ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy storage ; Extrusion ; Flux density ; Graphene ; Inks ; Materials Science ; Microelectrodes ; Nanotechnology ; Polypyrroles ; Research Article ; Selective surfaces ; Supercapacitors ; Three dimensional printing</subject><ispartof>Nano research, 2022-02, Vol.15 (2), p.1492-1499</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</citedby><cites>FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3693-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3693-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Guo, Minghao</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Cai, Yuyang</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Liao, Xiaobin</creatorcontrib><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Meng, Jiashen</creatorcontrib><creatorcontrib>Hong, Xufeng</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><title>In-situ selective surface engineering of graphene micro-supercapacitor chips</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm −2 . These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Capacitance</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy storage</subject><subject>Extrusion</subject><subject>Flux density</subject><subject>Graphene</subject><subject>Inks</subject><subject>Materials Science</subject><subject>Microelectrodes</subject><subject>Nanotechnology</subject><subject>Polypyrroles</subject><subject>Research Article</subject><subject>Selective surfaces</subject><subject>Supercapacitors</subject><subject>Three dimensional printing</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FMmo_mKItfsOBFzyHNTnez7LY1aQX_vS1VPDkwzBzedz4eQq6B3wLn5i6DEEYyLoAV2hZMnpAFWFsyPsbpbw9CnpOLnPecawGyXJD1S8Ny7Aea8YChj59I85BqH5Bis40NYorNlrY13Sbf7bBBeowhtSwPHabgOx9i3yYadrHLl-Ss9oeMVz91Sd4fH95Wz2z9-vSyul-zUIDumdDSltoqz6WuPYQKrRFYCQ1SCVmi1UZVBkCVGFRd2bDZVEYLEUIhrTKqWJKbeW6X2o8Bc-_27ZCacaUTmpdTKj6qYFaN5-acsHZdikefvhxwN0FzMzQ3QnMTNCdHj5g9uZv-xvQ3-X_TN_oTbs0</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Chen, Yiming</creator><creator>Guo, Minghao</creator><creator>Xu, Lin</creator><creator>Cai, Yuyang</creator><creator>Tian, Xiaocong</creator><creator>Liao, Xiaobin</creator><creator>Wang, Zhaoyang</creator><creator>Meng, Jiashen</creator><creator>Hong, Xufeng</creator><creator>Mai, Liqiang</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220201</creationdate><title>In-situ selective surface engineering of graphene micro-supercapacitor chips</title><author>Chen, Yiming ; Guo, Minghao ; Xu, Lin ; Cai, Yuyang ; Tian, Xiaocong ; Liao, Xiaobin ; Wang, Zhaoyang ; Meng, Jiashen ; Hong, Xufeng ; Mai, Liqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-26498695a046fa1cbe972eb26145248e9675b71158ec5fb9cddb7622cc3495753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Capacitance</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy storage</topic><topic>Extrusion</topic><topic>Flux density</topic><topic>Graphene</topic><topic>Inks</topic><topic>Materials Science</topic><topic>Microelectrodes</topic><topic>Nanotechnology</topic><topic>Polypyrroles</topic><topic>Research Article</topic><topic>Selective surfaces</topic><topic>Supercapacitors</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yiming</creatorcontrib><creatorcontrib>Guo, Minghao</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Cai, Yuyang</creatorcontrib><creatorcontrib>Tian, Xiaocong</creatorcontrib><creatorcontrib>Liao, Xiaobin</creatorcontrib><creatorcontrib>Wang, Zhaoyang</creatorcontrib><creatorcontrib>Meng, Jiashen</creatorcontrib><creatorcontrib>Hong, Xufeng</creatorcontrib><creatorcontrib>Mai, Liqiang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Yiming</au><au>Guo, Minghao</au><au>Xu, Lin</au><au>Cai, Yuyang</au><au>Tian, Xiaocong</au><au>Liao, Xiaobin</au><au>Wang, Zhaoyang</au><au>Meng, Jiashen</au><au>Hong, Xufeng</au><au>Mai, Liqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ selective surface engineering of graphene micro-supercapacitor chips</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>1492</spage><epage>1499</epage><pages>1492-1499</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm −2 . These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3693-4</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-02, Vol.15 (2), p.1492-1499
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2608260850
source Springer Nature - Complete Springer Journals
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Capacitance
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Energy storage
Extrusion
Flux density
Graphene
Inks
Materials Science
Microelectrodes
Nanotechnology
Polypyrroles
Research Article
Selective surfaces
Supercapacitors
Three dimensional printing
title In-situ selective surface engineering of graphene micro-supercapacitor chips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T20%3A58%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20selective%20surface%20engineering%20of%20graphene%20micro-supercapacitor%20chips&rft.jtitle=Nano%20research&rft.au=Chen,%20Yiming&rft.date=2022-02-01&rft.volume=15&rft.issue=2&rft.spage=1492&rft.epage=1499&rft.pages=1492-1499&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3693-4&rft_dat=%3Cproquest_cross%3E2608260850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608260850&rft_id=info:pmid/&rfr_iscdi=true