Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence

Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2022-02, Vol.15 (2), p.838-844
Hauptverfasser: Wu, Hao, Cheng, Xiaoyu, Dong, Hongguang, Xie, Songjun, He, Sailing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 844
container_issue 2
container_start_page 838
container_title Nano research
container_volume 15
creator Wu, Hao
Cheng, Xiaoyu
Dong, Hongguang
Xie, Songjun
He, Sailing
description Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.
doi_str_mv 10.1007/s12274-021-3486-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608260769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608260769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</originalsourceid><addsrcrecordid>eNp1kFtLxDAQhYMouK7-AN8CPldzadPGt2XxBgs-qM8hzWXJ0qZrki6sv96UKj45MMzAnHMGPgCuMbrFCNV3ERNSlwUiuKBlwwp-AhaY86ZAuU5_d0zKc3AR4w4hRnDZLIBedWPv_NhDL_2gwjEm2UVoDkN3cH4LbRh6qLoxJhNgGmBv8r1zCmZdMvfwzX0ZmEYvW9e5dITSaxj3RqUgu5zitPHKXIIzm1PN1c9cgo_Hh_f1c7F5fXpZrzaFopilwkqqqS1JjdpGs1Ia3bSUmYopRRBnFVeaW65t3WCJicaIKltVjcS1RLSVnC7BzZy7D8PnaGISu2EMPr8UhKEmd80mFZ5VKgwxBmPFPrhehqPASEwwxQxTZJhigikmD5k9MWv91oS_5P9N3yXAeSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608260769</pqid></control><display><type>article</type><title>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</title><source>SpringerLink Journals (MCLS)</source><creator>Wu, Hao ; Cheng, Xiaoyu ; Dong, Hongguang ; Xie, Songjun ; He, Sailing</creator><creatorcontrib>Wu, Hao ; Cheng, Xiaoyu ; Dong, Hongguang ; Xie, Songjun ; He, Sailing</creatorcontrib><description>Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3486-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aluminum ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystals ; Fluorescence ; Materials Science ; Metallicity ; Mie scattering ; Nanoclusters ; Nanocrystals ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Noble metals ; Photoluminescence ; Photons ; Plasmonics ; Plasmons ; Quantum confinement ; Research Article ; Synthesis</subject><ispartof>Nano research, 2022-02, Vol.15 (2), p.838-844</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</citedby><cites>FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3486-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3486-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Cheng, Xiaoyu</creatorcontrib><creatorcontrib>Dong, Hongguang</creatorcontrib><creatorcontrib>Xie, Songjun</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><title>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.</description><subject>Aluminum</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Fluorescence</subject><subject>Materials Science</subject><subject>Metallicity</subject><subject>Mie scattering</subject><subject>Nanoclusters</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Noble metals</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Quantum confinement</subject><subject>Research Article</subject><subject>Synthesis</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFtLxDAQhYMouK7-AN8CPldzadPGt2XxBgs-qM8hzWXJ0qZrki6sv96UKj45MMzAnHMGPgCuMbrFCNV3ERNSlwUiuKBlwwp-AhaY86ZAuU5_d0zKc3AR4w4hRnDZLIBedWPv_NhDL_2gwjEm2UVoDkN3cH4LbRh6qLoxJhNgGmBv8r1zCmZdMvfwzX0ZmEYvW9e5dITSaxj3RqUgu5zitPHKXIIzm1PN1c9cgo_Hh_f1c7F5fXpZrzaFopilwkqqqS1JjdpGs1Ia3bSUmYopRRBnFVeaW65t3WCJicaIKltVjcS1RLSVnC7BzZy7D8PnaGISu2EMPr8UhKEmd80mFZ5VKgwxBmPFPrhehqPASEwwxQxTZJhigikmD5k9MWv91oS_5P9N3yXAeSU</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Wu, Hao</creator><creator>Cheng, Xiaoyu</creator><creator>Dong, Hongguang</creator><creator>Xie, Songjun</creator><creator>He, Sailing</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220201</creationdate><title>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</title><author>Wu, Hao ; Cheng, Xiaoyu ; Dong, Hongguang ; Xie, Songjun ; He, Sailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Fluorescence</topic><topic>Materials Science</topic><topic>Metallicity</topic><topic>Mie scattering</topic><topic>Nanoclusters</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Noble metals</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Quantum confinement</topic><topic>Research Article</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Cheng, Xiaoyu</creatorcontrib><creatorcontrib>Dong, Hongguang</creatorcontrib><creatorcontrib>Xie, Songjun</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao</au><au>Cheng, Xiaoyu</au><au>Dong, Hongguang</au><au>Xie, Songjun</au><au>He, Sailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>838</spage><epage>844</epage><pages>838-844</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3486-9</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2022-02, Vol.15 (2), p.838-844
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_2608260769
source SpringerLink Journals (MCLS)
subjects Aluminum
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Crystals
Fluorescence
Materials Science
Metallicity
Mie scattering
Nanoclusters
Nanocrystals
Nanomaterials
Nanoparticles
Nanotechnology
Noble metals
Photoluminescence
Photons
Plasmonics
Plasmons
Quantum confinement
Research Article
Synthesis
title Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum%20nanocrystals%20evolving%20from%20cluster%20to%20metallic%20state:%20Size%20tunability%20and%20spectral%20evidence&rft.jtitle=Nano%20research&rft.au=Wu,%20Hao&rft.date=2022-02-01&rft.volume=15&rft.issue=2&rft.spage=838&rft.epage=844&rft.pages=838-844&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3486-9&rft_dat=%3Cproquest_cross%3E2608260769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608260769&rft_id=info:pmid/&rfr_iscdi=true