Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence
Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no m...
Gespeichert in:
Veröffentlicht in: | Nano research 2022-02, Vol.15 (2), p.838-844 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 844 |
---|---|
container_issue | 2 |
container_start_page | 838 |
container_title | Nano research |
container_volume | 15 |
creator | Wu, Hao Cheng, Xiaoyu Dong, Hongguang Xie, Songjun He, Sailing |
description | Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters. |
doi_str_mv | 10.1007/s12274-021-3486-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608260769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608260769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</originalsourceid><addsrcrecordid>eNp1kFtLxDAQhYMouK7-AN8CPldzadPGt2XxBgs-qM8hzWXJ0qZrki6sv96UKj45MMzAnHMGPgCuMbrFCNV3ERNSlwUiuKBlwwp-AhaY86ZAuU5_d0zKc3AR4w4hRnDZLIBedWPv_NhDL_2gwjEm2UVoDkN3cH4LbRh6qLoxJhNgGmBv8r1zCmZdMvfwzX0ZmEYvW9e5dITSaxj3RqUgu5zitPHKXIIzm1PN1c9cgo_Hh_f1c7F5fXpZrzaFopilwkqqqS1JjdpGs1Ia3bSUmYopRRBnFVeaW65t3WCJicaIKltVjcS1RLSVnC7BzZy7D8PnaGISu2EMPr8UhKEmd80mFZ5VKgwxBmPFPrhehqPASEwwxQxTZJhigikmD5k9MWv91oS_5P9N3yXAeSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608260769</pqid></control><display><type>article</type><title>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</title><source>SpringerLink Journals (MCLS)</source><creator>Wu, Hao ; Cheng, Xiaoyu ; Dong, Hongguang ; Xie, Songjun ; He, Sailing</creator><creatorcontrib>Wu, Hao ; Cheng, Xiaoyu ; Dong, Hongguang ; Xie, Songjun ; He, Sailing</creatorcontrib><description>Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-021-3486-9</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Aluminum ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystals ; Fluorescence ; Materials Science ; Metallicity ; Mie scattering ; Nanoclusters ; Nanocrystals ; Nanomaterials ; Nanoparticles ; Nanotechnology ; Noble metals ; Photoluminescence ; Photons ; Plasmonics ; Plasmons ; Quantum confinement ; Research Article ; Synthesis</subject><ispartof>Nano research, 2022-02, Vol.15 (2), p.838-844</ispartof><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</citedby><cites>FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-021-3486-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-021-3486-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Cheng, Xiaoyu</creatorcontrib><creatorcontrib>Dong, Hongguang</creatorcontrib><creatorcontrib>Xie, Songjun</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><title>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</title><title>Nano research</title><addtitle>Nano Res</addtitle><description>Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.</description><subject>Aluminum</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>Fluorescence</subject><subject>Materials Science</subject><subject>Metallicity</subject><subject>Mie scattering</subject><subject>Nanoclusters</subject><subject>Nanocrystals</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Noble metals</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Plasmons</subject><subject>Quantum confinement</subject><subject>Research Article</subject><subject>Synthesis</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFtLxDAQhYMouK7-AN8CPldzadPGt2XxBgs-qM8hzWXJ0qZrki6sv96UKj45MMzAnHMGPgCuMbrFCNV3ERNSlwUiuKBlwwp-AhaY86ZAuU5_d0zKc3AR4w4hRnDZLIBedWPv_NhDL_2gwjEm2UVoDkN3cH4LbRh6qLoxJhNgGmBv8r1zCmZdMvfwzX0ZmEYvW9e5dITSaxj3RqUgu5zitPHKXIIzm1PN1c9cgo_Hh_f1c7F5fXpZrzaFopilwkqqqS1JjdpGs1Ia3bSUmYopRRBnFVeaW65t3WCJicaIKltVjcS1RLSVnC7BzZy7D8PnaGISu2EMPr8UhKEmd80mFZ5VKgwxBmPFPrhehqPASEwwxQxTZJhigikmD5k9MWv91oS_5P9N3yXAeSU</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Wu, Hao</creator><creator>Cheng, Xiaoyu</creator><creator>Dong, Hongguang</creator><creator>Xie, Songjun</creator><creator>He, Sailing</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20220201</creationdate><title>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</title><author>Wu, Hao ; Cheng, Xiaoyu ; Dong, Hongguang ; Xie, Songjun ; He, Sailing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fa3d3f4270b8d64aed8b36e56cc209659cd9f9df781a12d103cf558a17a03ba93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>Fluorescence</topic><topic>Materials Science</topic><topic>Metallicity</topic><topic>Mie scattering</topic><topic>Nanoclusters</topic><topic>Nanocrystals</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Noble metals</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Plasmons</topic><topic>Quantum confinement</topic><topic>Research Article</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Cheng, Xiaoyu</creatorcontrib><creatorcontrib>Dong, Hongguang</creatorcontrib><creatorcontrib>Xie, Songjun</creatorcontrib><creatorcontrib>He, Sailing</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Hao</au><au>Cheng, Xiaoyu</au><au>Dong, Hongguang</au><au>Xie, Songjun</au><au>He, Sailing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>15</volume><issue>2</issue><spage>838</spage><epage>844</epage><pages>838-844</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Sub-3 nm aluminum (Al) nanocrystal is an emerging class of nanomaterial with properties distinct to noble metal nanoclusters. The complete solution synthesis of aluminum nanoclusters was recently reported, and their photoluminescence (PL) observed for the first time. At the moment, there exists no method to tune the size of ultrasmall aluminum nanocrystals in solution thus no knowledge on the boundary state between aluminum nanoclusters to plasmonic nanoparticles. In this work, it is demonstrated a study of size-controlled solution synthesis of ultrasmall aluminum nanocrystals with size controlled between ∼ 2.2 to ∼ 3.8 nm. Increasing the size results in three sets of spectral responses: (1) absorption due to nascent plasmons generated at ∼ 340 nm for larger particles, confirmed by Mie theory calculations; (2) significant decreased quantum yield of PL from ∼ 7.8% to ∼ 2.4%, indicating reduced quantum confinement effects and increased metallicity; (3) drop of fluorescence lifetime was observed, especially when the diameter of aluminum nanoparticles was changed from ∼ 3.0 to ∼ 3.8 nm. This study provides experimental evidence and insights to the transitional state between aluminum nanoclusters to plasmonic nanoparticles, which seems to occur at size larger than gold nanoclusters.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-021-3486-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2022-02, Vol.15 (2), p.838-844 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_2608260769 |
source | SpringerLink Journals (MCLS) |
subjects | Aluminum Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Crystals Fluorescence Materials Science Metallicity Mie scattering Nanoclusters Nanocrystals Nanomaterials Nanoparticles Nanotechnology Noble metals Photoluminescence Photons Plasmonics Plasmons Quantum confinement Research Article Synthesis |
title | Aluminum nanocrystals evolving from cluster to metallic state: Size tunability and spectral evidence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum%20nanocrystals%20evolving%20from%20cluster%20to%20metallic%20state:%20Size%20tunability%20and%20spectral%20evidence&rft.jtitle=Nano%20research&rft.au=Wu,%20Hao&rft.date=2022-02-01&rft.volume=15&rft.issue=2&rft.spage=838&rft.epage=844&rft.pages=838-844&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-021-3486-9&rft_dat=%3Cproquest_cross%3E2608260769%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608260769&rft_id=info:pmid/&rfr_iscdi=true |