Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate

The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2021-12, Vol.14 (12), p.6595-6604
Hauptverfasser: Hanein, Theodore, Simoni, Marco, Chun Long Woo, Provis, John L, Kinoshita, Hajime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6604
container_issue 12
container_start_page 6595
container_title Energy & environmental science
container_volume 14
creator Hanein, Theodore
Simoni, Marco
Chun Long Woo
Provis, John L
Kinoshita, Hajime
description The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime.
doi_str_mv 10.1039/d1ee02637b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2608159271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608159271</sourcerecordid><originalsourceid>FETCH-LOGICAL-p149t-b2be8d4be3336abfb4de6ace92f45e95778d8e0f5f3d2d223d1619b8b0f6fc333</originalsourceid><addsrcrecordid>eNpVjstOwzAQRS0EEqWw4QsssW3Aj8SJl6hQQKrUDawrP8YkVROH2BZfwv_iqnSBNNLc0cy9ZxC6peSeEi4fLAUgTPBan6EZrauyqGoizk9aSHaJrkLYESIYqeUM_TyBUZP2QxdU7PyAvcNG7U2XenxcqAhYxVy9D2MLU2dwhH6EScU0QcBqsHjMIhymBf7uYotD16d9VAP4FPByw3LUeLhe4NhOPn222eFtMidi8PYf8BpdOLUPcPPX5-hj9fy-fC3Wm5e35eO6GGkpY6GZhsaWGjjnQmmnSwtCGZDMlRXIqq4b2wBxleOWWca4pYJK3WjihDPZNEd3x9z8zleCELc7n6YhI7dMkIZWktWU_wJqbGyJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608159271</pqid></control><display><type>article</type><title>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hanein, Theodore ; Simoni, Marco ; Chun Long Woo ; Provis, John L ; Kinoshita, Hajime</creator><creatorcontrib>Hanein, Theodore ; Simoni, Marco ; Chun Long Woo ; Provis, John L ; Kinoshita, Hajime</creatorcontrib><description>The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee02637b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atmospheric temperature ; Calcium carbonate ; Calcium hydroxide ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sequestration ; Chalk ; Climate change ; Decarbonization ; Emissions ; Fruits ; High temperature ; Lime ; Limestone ; Low temperature ; Manufacturing industry ; Reaction products ; Roasting ; Silica ; Silicon dioxide ; Slaked lime ; Sodium ; Sodium carbonate ; Sodium hydroxide ; Symbiosis ; Technology ; Temperature ; Temperature requirements</subject><ispartof>Energy &amp; environmental science, 2021-12, Vol.14 (12), p.6595-6604</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hanein, Theodore</creatorcontrib><creatorcontrib>Simoni, Marco</creatorcontrib><creatorcontrib>Chun Long Woo</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Kinoshita, Hajime</creatorcontrib><title>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</title><title>Energy &amp; environmental science</title><description>The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime.</description><subject>Atmospheric temperature</subject><subject>Calcium carbonate</subject><subject>Calcium hydroxide</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Chalk</subject><subject>Climate change</subject><subject>Decarbonization</subject><subject>Emissions</subject><subject>Fruits</subject><subject>High temperature</subject><subject>Lime</subject><subject>Limestone</subject><subject>Low temperature</subject><subject>Manufacturing industry</subject><subject>Reaction products</subject><subject>Roasting</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Slaked lime</subject><subject>Sodium</subject><subject>Sodium carbonate</subject><subject>Sodium hydroxide</subject><subject>Symbiosis</subject><subject>Technology</subject><subject>Temperature</subject><subject>Temperature requirements</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVjstOwzAQRS0EEqWw4QsssW3Aj8SJl6hQQKrUDawrP8YkVROH2BZfwv_iqnSBNNLc0cy9ZxC6peSeEi4fLAUgTPBan6EZrauyqGoizk9aSHaJrkLYESIYqeUM_TyBUZP2QxdU7PyAvcNG7U2XenxcqAhYxVy9D2MLU2dwhH6EScU0QcBqsHjMIhymBf7uYotD16d9VAP4FPByw3LUeLhe4NhOPn222eFtMidi8PYf8BpdOLUPcPPX5-hj9fy-fC3Wm5e35eO6GGkpY6GZhsaWGjjnQmmnSwtCGZDMlRXIqq4b2wBxleOWWca4pYJK3WjihDPZNEd3x9z8zleCELc7n6YhI7dMkIZWktWU_wJqbGyJ</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Hanein, Theodore</creator><creator>Simoni, Marco</creator><creator>Chun Long Woo</creator><creator>Provis, John L</creator><creator>Kinoshita, Hajime</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20211209</creationdate><title>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</title><author>Hanein, Theodore ; Simoni, Marco ; Chun Long Woo ; Provis, John L ; Kinoshita, Hajime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p149t-b2be8d4be3336abfb4de6ace92f45e95778d8e0f5f3d2d223d1619b8b0f6fc333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric temperature</topic><topic>Calcium carbonate</topic><topic>Calcium hydroxide</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Chalk</topic><topic>Climate change</topic><topic>Decarbonization</topic><topic>Emissions</topic><topic>Fruits</topic><topic>High temperature</topic><topic>Lime</topic><topic>Limestone</topic><topic>Low temperature</topic><topic>Manufacturing industry</topic><topic>Reaction products</topic><topic>Roasting</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Slaked lime</topic><topic>Sodium</topic><topic>Sodium carbonate</topic><topic>Sodium hydroxide</topic><topic>Symbiosis</topic><topic>Technology</topic><topic>Temperature</topic><topic>Temperature requirements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanein, Theodore</creatorcontrib><creatorcontrib>Simoni, Marco</creatorcontrib><creatorcontrib>Chun Long Woo</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Kinoshita, Hajime</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanein, Theodore</au><au>Simoni, Marco</au><au>Chun Long Woo</au><au>Provis, John L</au><au>Kinoshita, Hajime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2021-12-09</date><risdate>2021</risdate><volume>14</volume><issue>12</issue><spage>6595</spage><epage>6604</epage><pages>6595-6604</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee02637b</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2021-12, Vol.14 (12), p.6595-6604
issn 1754-5692
1754-5706
language eng
recordid cdi_proquest_journals_2608159271
source Royal Society Of Chemistry Journals 2008-
subjects Atmospheric temperature
Calcium carbonate
Calcium hydroxide
Carbon dioxide
Carbon dioxide emissions
Carbon sequestration
Chalk
Climate change
Decarbonization
Emissions
Fruits
High temperature
Lime
Limestone
Low temperature
Manufacturing industry
Reaction products
Roasting
Silica
Silicon dioxide
Slaked lime
Sodium
Sodium carbonate
Sodium hydroxide
Symbiosis
Technology
Temperature
Temperature requirements
title Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decarbonisation%20of%20calcium%20carbonate%20at%20atmospheric%20temperatures%20and%20pressures,%20with%20simultaneous%20CO2%20capture,%20through%20production%20of%20sodium%20carbonate&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Hanein,%20Theodore&rft.date=2021-12-09&rft.volume=14&rft.issue=12&rft.spage=6595&rft.epage=6604&rft.pages=6595-6604&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee02637b&rft_dat=%3Cproquest%3E2608159271%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608159271&rft_id=info:pmid/&rfr_iscdi=true