Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate
The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is d...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2021-12, Vol.14 (12), p.6595-6604 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6604 |
---|---|
container_issue | 12 |
container_start_page | 6595 |
container_title | Energy & environmental science |
container_volume | 14 |
creator | Hanein, Theodore Simoni, Marco Chun Long Woo Provis, John L Kinoshita, Hajime |
description | The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime. |
doi_str_mv | 10.1039/d1ee02637b |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2608159271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608159271</sourcerecordid><originalsourceid>FETCH-LOGICAL-p149t-b2be8d4be3336abfb4de6ace92f45e95778d8e0f5f3d2d223d1619b8b0f6fc333</originalsourceid><addsrcrecordid>eNpVjstOwzAQRS0EEqWw4QsssW3Aj8SJl6hQQKrUDawrP8YkVROH2BZfwv_iqnSBNNLc0cy9ZxC6peSeEi4fLAUgTPBan6EZrauyqGoizk9aSHaJrkLYESIYqeUM_TyBUZP2QxdU7PyAvcNG7U2XenxcqAhYxVy9D2MLU2dwhH6EScU0QcBqsHjMIhymBf7uYotD16d9VAP4FPByw3LUeLhe4NhOPn222eFtMidi8PYf8BpdOLUPcPPX5-hj9fy-fC3Wm5e35eO6GGkpY6GZhsaWGjjnQmmnSwtCGZDMlRXIqq4b2wBxleOWWca4pYJK3WjihDPZNEd3x9z8zleCELc7n6YhI7dMkIZWktWU_wJqbGyJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608159271</pqid></control><display><type>article</type><title>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Hanein, Theodore ; Simoni, Marco ; Chun Long Woo ; Provis, John L ; Kinoshita, Hajime</creator><creatorcontrib>Hanein, Theodore ; Simoni, Marco ; Chun Long Woo ; Provis, John L ; Kinoshita, Hajime</creatorcontrib><description>The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d1ee02637b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Atmospheric temperature ; Calcium carbonate ; Calcium hydroxide ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sequestration ; Chalk ; Climate change ; Decarbonization ; Emissions ; Fruits ; High temperature ; Lime ; Limestone ; Low temperature ; Manufacturing industry ; Reaction products ; Roasting ; Silica ; Silicon dioxide ; Slaked lime ; Sodium ; Sodium carbonate ; Sodium hydroxide ; Symbiosis ; Technology ; Temperature ; Temperature requirements</subject><ispartof>Energy & environmental science, 2021-12, Vol.14 (12), p.6595-6604</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Hanein, Theodore</creatorcontrib><creatorcontrib>Simoni, Marco</creatorcontrib><creatorcontrib>Chun Long Woo</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Kinoshita, Hajime</creatorcontrib><title>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</title><title>Energy & environmental science</title><description>The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime.</description><subject>Atmospheric temperature</subject><subject>Calcium carbonate</subject><subject>Calcium hydroxide</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Chalk</subject><subject>Climate change</subject><subject>Decarbonization</subject><subject>Emissions</subject><subject>Fruits</subject><subject>High temperature</subject><subject>Lime</subject><subject>Limestone</subject><subject>Low temperature</subject><subject>Manufacturing industry</subject><subject>Reaction products</subject><subject>Roasting</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Slaked lime</subject><subject>Sodium</subject><subject>Sodium carbonate</subject><subject>Sodium hydroxide</subject><subject>Symbiosis</subject><subject>Technology</subject><subject>Temperature</subject><subject>Temperature requirements</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVjstOwzAQRS0EEqWw4QsssW3Aj8SJl6hQQKrUDawrP8YkVROH2BZfwv_iqnSBNNLc0cy9ZxC6peSeEi4fLAUgTPBan6EZrauyqGoizk9aSHaJrkLYESIYqeUM_TyBUZP2QxdU7PyAvcNG7U2XenxcqAhYxVy9D2MLU2dwhH6EScU0QcBqsHjMIhymBf7uYotD16d9VAP4FPByw3LUeLhe4NhOPn222eFtMidi8PYf8BpdOLUPcPPX5-hj9fy-fC3Wm5e35eO6GGkpY6GZhsaWGjjnQmmnSwtCGZDMlRXIqq4b2wBxleOWWca4pYJK3WjihDPZNEd3x9z8zleCELc7n6YhI7dMkIZWktWU_wJqbGyJ</recordid><startdate>20211209</startdate><enddate>20211209</enddate><creator>Hanein, Theodore</creator><creator>Simoni, Marco</creator><creator>Chun Long Woo</creator><creator>Provis, John L</creator><creator>Kinoshita, Hajime</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20211209</creationdate><title>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</title><author>Hanein, Theodore ; Simoni, Marco ; Chun Long Woo ; Provis, John L ; Kinoshita, Hajime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p149t-b2be8d4be3336abfb4de6ace92f45e95778d8e0f5f3d2d223d1619b8b0f6fc333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric temperature</topic><topic>Calcium carbonate</topic><topic>Calcium hydroxide</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Chalk</topic><topic>Climate change</topic><topic>Decarbonization</topic><topic>Emissions</topic><topic>Fruits</topic><topic>High temperature</topic><topic>Lime</topic><topic>Limestone</topic><topic>Low temperature</topic><topic>Manufacturing industry</topic><topic>Reaction products</topic><topic>Roasting</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Slaked lime</topic><topic>Sodium</topic><topic>Sodium carbonate</topic><topic>Sodium hydroxide</topic><topic>Symbiosis</topic><topic>Technology</topic><topic>Temperature</topic><topic>Temperature requirements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanein, Theodore</creatorcontrib><creatorcontrib>Simoni, Marco</creatorcontrib><creatorcontrib>Chun Long Woo</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Kinoshita, Hajime</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanein, Theodore</au><au>Simoni, Marco</au><au>Chun Long Woo</au><au>Provis, John L</au><au>Kinoshita, Hajime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate</atitle><jtitle>Energy & environmental science</jtitle><date>2021-12-09</date><risdate>2021</risdate><volume>14</volume><issue>12</issue><spage>6595</spage><epage>6604</epage><pages>6595-6604</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>The calcination of calcium carbonate (CaCO3) is a major contributor to carbon dioxide (CO2) emissions that are changing our climate. Moreover, the calcination process requires high temperatures (∼900 °C). A novel low-temperature process for the decarbonisation of CaCO3 is tested whereby the CO2 is directly sequestered/mineralised in sodium carbonate. CaCO3 is reacted with an aqueous sodium hydroxide solution by mixing under atmospheric temperatures and pressures. The reaction products are calcium hydroxide (hydrated lime; Ca(OH)2) and sodium carbonate (soda ash; Na2CO3). For the first time, the extent of this reaction at ambient conditions is studied along with the NaOH requirements. Conceptual process designs, which include procedures to separate and recover material, as well as energy calculations, are also presented to demonstrate the technical/industrial feasibility of the process. The technology is also successfully tested on industrially sourced limestone chalk, and the silica impurity remains inert throughout the process. This technology will enable industrial symbiosis by combining the high-temperature lime and sodium carbonate manufacturing processes into a single low-temperature process and greatly reduce the chemical (raw material) CO2 emissions associated with the production of cement and lime.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ee02637b</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2021-12, Vol.14 (12), p.6595-6604 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2608159271 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Atmospheric temperature Calcium carbonate Calcium hydroxide Carbon dioxide Carbon dioxide emissions Carbon sequestration Chalk Climate change Decarbonization Emissions Fruits High temperature Lime Limestone Low temperature Manufacturing industry Reaction products Roasting Silica Silicon dioxide Slaked lime Sodium Sodium carbonate Sodium hydroxide Symbiosis Technology Temperature Temperature requirements |
title | Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A47%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decarbonisation%20of%20calcium%20carbonate%20at%20atmospheric%20temperatures%20and%20pressures,%20with%20simultaneous%20CO2%20capture,%20through%20production%20of%20sodium%20carbonate&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Hanein,%20Theodore&rft.date=2021-12-09&rft.volume=14&rft.issue=12&rft.spage=6595&rft.epage=6604&rft.pages=6595-6604&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d1ee02637b&rft_dat=%3Cproquest%3E2608159271%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608159271&rft_id=info:pmid/&rfr_iscdi=true |