Analytical Solution for the Cavitating Flow over a Wedge. II

This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2021-11, Vol.61 (11), p.1834-1854
Hauptverfasser: Vlasov, V. I., Skorokhodov, S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1854
container_issue 11
container_start_page 1834
container_title Computational mathematics and mathematical physics
container_volume 61
creator Vlasov, V. I.
Skorokhodov, S. L.
description This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as is found. Additionally, the asymptotics of the drag coefficient and the relative sizes of the cavity as the cavitation number tends to zero are established.
doi_str_mv 10.1134/S0965542521110154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608143361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608143361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRsFZ_gLsB16nz5uMlATel2BoouKjiMkwnk5gSM3VmWum_N6WCC3H1Fvecy-MScgtsAiDk_YrlqJTkigMAAyXPyAiUUgki8nMyOsbJMb8kVyFsGAPMMzEiD9Ned4fYGt3Rlet2sXU9rZ2n8d3Smd63Uce2b-i8c1_U7a2nmr7ZqrETWhTX5KLWXbA3P3dMXuePL7OnZPm8KGbTZWIEYEykBJZVytRSIJh1hRkoriuhUrTcVkLXPEuRM0iFsQZFlae5NLlGrhhb51qMyd2pd-vd586GWG7czg-Ph5Ijy0CKoXig4EQZ70Lwti63vv3Q_lACK48jlX9GGhx-csLA9o31v83_S9_yb2XS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608143361</pqid></control><display><type>article</type><title>Analytical Solution for the Cavitating Flow over a Wedge. II</title><source>SpringerLink Journals</source><creator>Vlasov, V. I. ; Skorokhodov, S. L.</creator><creatorcontrib>Vlasov, V. I. ; Skorokhodov, S. L.</creatorcontrib><description>This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as is found. Additionally, the asymptotics of the drag coefficient and the relative sizes of the cavity as the cavitation number tends to zero are established.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542521110154</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Cavitation number ; Computational Mathematics and Numerical Analysis ; Drag coefficients ; Exact solutions ; Fluid flow ; Hypergeometric functions ; Ideal fluids ; Mathematical Physics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational mathematics and mathematical physics, 2021-11, Vol.61 (11), p.1834-1854</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2021, Vol. 61, No. 11, pp. 1834–1854. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2021, Vol. 61, No. 11, pp. 1873–1893.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</citedby><cites>FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542521110154$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542521110154$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vlasov, V. I.</creatorcontrib><creatorcontrib>Skorokhodov, S. L.</creatorcontrib><title>Analytical Solution for the Cavitating Flow over a Wedge. II</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as is found. Additionally, the asymptotics of the drag coefficient and the relative sizes of the cavity as the cavitation number tends to zero are established.</description><subject>Asymptotic properties</subject><subject>Cavitation number</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Drag coefficients</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Hypergeometric functions</subject><subject>Ideal fluids</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AURQdRsFZ_gLsB16nz5uMlATel2BoouKjiMkwnk5gSM3VmWum_N6WCC3H1Fvecy-MScgtsAiDk_YrlqJTkigMAAyXPyAiUUgki8nMyOsbJMb8kVyFsGAPMMzEiD9Ned4fYGt3Rlet2sXU9rZ2n8d3Smd63Uce2b-i8c1_U7a2nmr7ZqrETWhTX5KLWXbA3P3dMXuePL7OnZPm8KGbTZWIEYEykBJZVytRSIJh1hRkoriuhUrTcVkLXPEuRM0iFsQZFlae5NLlGrhhb51qMyd2pd-vd586GWG7czg-Ph5Ijy0CKoXig4EQZ70Lwti63vv3Q_lACK48jlX9GGhx-csLA9o31v83_S9_yb2XS</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Vlasov, V. I.</creator><creator>Skorokhodov, S. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211101</creationdate><title>Analytical Solution for the Cavitating Flow over a Wedge. II</title><author>Vlasov, V. I. ; Skorokhodov, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Cavitation number</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Drag coefficients</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Hypergeometric functions</topic><topic>Ideal fluids</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlasov, V. I.</creatorcontrib><creatorcontrib>Skorokhodov, S. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vlasov, V. I.</au><au>Skorokhodov, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Solution for the Cavitating Flow over a Wedge. II</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>61</volume><issue>11</issue><spage>1834</spage><epage>1854</epage><pages>1834-1854</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as is found. Additionally, the asymptotics of the drag coefficient and the relative sizes of the cavity as the cavitation number tends to zero are established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542521110154</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2021-11, Vol.61 (11), p.1834-1854
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_2608143361
source SpringerLink Journals
subjects Asymptotic properties
Cavitation number
Computational Mathematics and Numerical Analysis
Drag coefficients
Exact solutions
Fluid flow
Hypergeometric functions
Ideal fluids
Mathematical Physics
Mathematics
Mathematics and Statistics
title Analytical Solution for the Cavitating Flow over a Wedge. II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Solution%20for%20the%20Cavitating%20Flow%20over%20a%20Wedge.%20II&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Vlasov,%20V.%20I.&rft.date=2021-11-01&rft.volume=61&rft.issue=11&rft.spage=1834&rft.epage=1854&rft.pages=1834-1854&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542521110154&rft_dat=%3Cproquest_cross%3E2608143361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608143361&rft_id=info:pmid/&rfr_iscdi=true