Analytical Solution for the Cavitating Flow over a Wedge. II
This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric f...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2021-11, Vol.61 (11), p.1834-1854 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1854 |
---|---|
container_issue | 11 |
container_start_page | 1834 |
container_title | Computational mathematics and mathematical physics |
container_volume | 61 |
creator | Vlasov, V. I. Skorokhodov, S. L. |
description | This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as
is found. Additionally, the asymptotics of the drag coefficient
and the relative sizes of the cavity as the cavitation number
tends to zero are established. |
doi_str_mv | 10.1134/S0965542521110154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608143361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608143361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AURQdRsFZ_gLsB16nz5uMlATel2BoouKjiMkwnk5gSM3VmWum_N6WCC3H1Fvecy-MScgtsAiDk_YrlqJTkigMAAyXPyAiUUgki8nMyOsbJMb8kVyFsGAPMMzEiD9Ned4fYGt3Rlet2sXU9rZ2n8d3Smd63Uce2b-i8c1_U7a2nmr7ZqrETWhTX5KLWXbA3P3dMXuePL7OnZPm8KGbTZWIEYEykBJZVytRSIJh1hRkoriuhUrTcVkLXPEuRM0iFsQZFlae5NLlGrhhb51qMyd2pd-vd586GWG7czg-Ph5Ijy0CKoXig4EQZ70Lwti63vv3Q_lACK48jlX9GGhx-csLA9o31v83_S9_yb2XS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608143361</pqid></control><display><type>article</type><title>Analytical Solution for the Cavitating Flow over a Wedge. II</title><source>SpringerLink Journals</source><creator>Vlasov, V. I. ; Skorokhodov, S. L.</creator><creatorcontrib>Vlasov, V. I. ; Skorokhodov, S. L.</creatorcontrib><description>This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as
is found. Additionally, the asymptotics of the drag coefficient
and the relative sizes of the cavity as the cavitation number
tends to zero are established.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542521110154</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Cavitation number ; Computational Mathematics and Numerical Analysis ; Drag coefficients ; Exact solutions ; Fluid flow ; Hypergeometric functions ; Ideal fluids ; Mathematical Physics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational mathematics and mathematical physics, 2021-11, Vol.61 (11), p.1834-1854</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2021, Vol. 61, No. 11, pp. 1834–1854. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2021, Vol. 61, No. 11, pp. 1873–1893.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</citedby><cites>FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542521110154$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542521110154$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Vlasov, V. I.</creatorcontrib><creatorcontrib>Skorokhodov, S. L.</creatorcontrib><title>Analytical Solution for the Cavitating Flow over a Wedge. II</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as
is found. Additionally, the asymptotics of the drag coefficient
and the relative sizes of the cavity as the cavitation number
tends to zero are established.</description><subject>Asymptotic properties</subject><subject>Cavitation number</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Drag coefficients</subject><subject>Exact solutions</subject><subject>Fluid flow</subject><subject>Hypergeometric functions</subject><subject>Ideal fluids</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AURQdRsFZ_gLsB16nz5uMlATel2BoouKjiMkwnk5gSM3VmWum_N6WCC3H1Fvecy-MScgtsAiDk_YrlqJTkigMAAyXPyAiUUgki8nMyOsbJMb8kVyFsGAPMMzEiD9Ned4fYGt3Rlet2sXU9rZ2n8d3Smd63Uce2b-i8c1_U7a2nmr7ZqrETWhTX5KLWXbA3P3dMXuePL7OnZPm8KGbTZWIEYEykBJZVytRSIJh1hRkoriuhUrTcVkLXPEuRM0iFsQZFlae5NLlGrhhb51qMyd2pd-vd586GWG7czg-Ph5Ijy0CKoXig4EQZ70Lwti63vv3Q_lACK48jlX9GGhx-csLA9o31v83_S9_yb2XS</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Vlasov, V. I.</creator><creator>Skorokhodov, S. L.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20211101</creationdate><title>Analytical Solution for the Cavitating Flow over a Wedge. II</title><author>Vlasov, V. I. ; Skorokhodov, S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-44108d5cf4361cbd68152ad3576e2ed3af287620173cec63d9794c9a62500b9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Cavitation number</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Drag coefficients</topic><topic>Exact solutions</topic><topic>Fluid flow</topic><topic>Hypergeometric functions</topic><topic>Ideal fluids</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vlasov, V. I.</creatorcontrib><creatorcontrib>Skorokhodov, S. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vlasov, V. I.</au><au>Skorokhodov, S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical Solution for the Cavitating Flow over a Wedge. II</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>61</volume><issue>11</issue><spage>1834</spage><epage>1854</epage><pages>1834-1854</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>This work continues previous studies of the authors and provides an analytical solution to the plane problem of symmetric cavitating flow of an ideal fluid over a wedge for Tulin’s cavity closure model with a double-spiral vortex. The solution is expressed in terms of the Lauricella hypergeometric function. A numerical implementation of the solution is described in detail, and an asymptotic analysis of the solution is given. The spiral structure of vortices closing the cavity is studied, and the vortex size is estimated. An asymptotic representation of the wake width as
is found. Additionally, the asymptotics of the drag coefficient
and the relative sizes of the cavity as the cavitation number
tends to zero are established.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542521110154</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2021-11, Vol.61 (11), p.1834-1854 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_2608143361 |
source | SpringerLink Journals |
subjects | Asymptotic properties Cavitation number Computational Mathematics and Numerical Analysis Drag coefficients Exact solutions Fluid flow Hypergeometric functions Ideal fluids Mathematical Physics Mathematics Mathematics and Statistics |
title | Analytical Solution for the Cavitating Flow over a Wedge. II |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A00%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20Solution%20for%20the%20Cavitating%20Flow%20over%20a%20Wedge.%20II&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Vlasov,%20V.%20I.&rft.date=2021-11-01&rft.volume=61&rft.issue=11&rft.spage=1834&rft.epage=1854&rft.pages=1834-1854&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542521110154&rft_dat=%3Cproquest_cross%3E2608143361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608143361&rft_id=info:pmid/&rfr_iscdi=true |