Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization

At present, learning-based citrus blossom recognition models based on deep learning are highly complicated and have a large number of parameters. In order to estimate citrus flower quantities in natural orchards, this study proposes a lightweight citrus flower recognition model based on improved YOL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2021-11, Vol.21 (23), p.7929
Hauptverfasser: Lu, Jianqiang, Lin, Weize, Chen, Pingfu, Lan, Yubin, Deng, Xiaoling, Niu, Hongyu, Mo, Jiawei, Li, Jiaxing, Luo, Shengfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 7929
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Lu, Jianqiang
Lin, Weize
Chen, Pingfu
Lan, Yubin
Deng, Xiaoling
Niu, Hongyu
Mo, Jiawei
Li, Jiaxing
Luo, Shengfu
description At present, learning-based citrus blossom recognition models based on deep learning are highly complicated and have a large number of parameters. In order to estimate citrus flower quantities in natural orchards, this study proposes a lightweight citrus flower recognition model based on improved YOLOv4. In order to compress the backbone network, we utilize MobileNetv3 as a feature extractor, combined with deep separable convolution for further acceleration. The Cutout data enhancement method is also introduced to simulate citrus in nature for data enhancement. The test results show that the improved model has an mAP of 84.84%, 22% smaller than that of YOLOv4, and approximately two times faster. Compared with the Faster R-CNN, the improved citrus flower rate statistical model proposed in this study has the advantages of less memory usage and fast detection speed under the premise of ensuring a certain accuracy. Therefore, our solution can be used as a reference for the edge detection of citrus flowering.
doi_str_mv 10.3390/s21237929
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2608140694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5210d0deff2b4afb99c756ace1a4562b</doaj_id><sourcerecordid>2608534632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-117f700bb5a2524935fe6675ff95f3e6563a662674dd9ab16d0882c400bcabd53</originalsourceid><addsrcrecordid>eNpdkl2L1DAUhoso7ode-A8C3ujFaL7b3AhLcdaFkYVVr0OanEwztM2YpA766-3sLIvrTRKS533IOZyqekPwB8YU_pgpoaxWVD2rzgmnfNVQip__cz6rLnLeYUwZY83L6ozxpmGK0fMq3UEGk2yP4oQ2YduXAxxX1IaS5ozWQzxACtMW3ZkC6FsxJeQSrBnQ1-hgQG0cuzCBQ4dQenQ12T4mtE5mBNQOcy6n8O2-hDH8WcJxelW98GbI8Pphv6x-rD9_b7-sNrfXN-3VZmU5l2VFSO1rjLtOGCooV0x4kLIW3ivhGUghmZGSypo7p0xHpMNNQy1fItZ0TrDL6ubkddHs9D6F0aTfOpqg7y9i2mqTllIG0IIS7LAD72nHje-UsrWQxgIxXEjaLa5PJ9d-7kZwFqaSzPBE-vRlCr3exl-6kUJxQRfBuwdBij9nyEWPIVsYBjNBnLOmEjeCccmO6Nv_0F2c07S06p4iHEvFF-r9ibIp5pzAP36GYH2cCv04FewvqEmpaw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608140694</pqid></control><display><type>article</type><title>Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Jianqiang ; Lin, Weize ; Chen, Pingfu ; Lan, Yubin ; Deng, Xiaoling ; Niu, Hongyu ; Mo, Jiawei ; Li, Jiaxing ; Luo, Shengfu</creator><creatorcontrib>Lu, Jianqiang ; Lin, Weize ; Chen, Pingfu ; Lan, Yubin ; Deng, Xiaoling ; Niu, Hongyu ; Mo, Jiawei ; Li, Jiaxing ; Luo, Shengfu</creatorcontrib><description>At present, learning-based citrus blossom recognition models based on deep learning are highly complicated and have a large number of parameters. In order to estimate citrus flower quantities in natural orchards, this study proposes a lightweight citrus flower recognition model based on improved YOLOv4. In order to compress the backbone network, we utilize MobileNetv3 as a feature extractor, combined with deep separable convolution for further acceleration. The Cutout data enhancement method is also introduced to simulate citrus in nature for data enhancement. The test results show that the improved model has an mAP of 84.84%, 22% smaller than that of YOLOv4, and approximately two times faster. Compared with the Faster R-CNN, the improved citrus flower rate statistical model proposed in this study has the advantages of less memory usage and fast detection speed under the premise of ensuring a certain accuracy. Therefore, our solution can be used as a reference for the edge detection of citrus flowering.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21237929</identifier><identifier>PMID: 34883932</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acceleration ; Accuracy ; Algorithms ; citrus flowering rate ; Clustering ; Data collection ; Datasets ; Deep learning ; edge computing ; Edge detection ; Flowering ; Flowers &amp; plants ; light weight ; Lightweight ; Methods ; Neural networks ; Orchards ; Recognition ; Statistical models ; YOLOv4</subject><ispartof>Sensors (Basel, Switzerland), 2021-11, Vol.21 (23), p.7929</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-117f700bb5a2524935fe6675ff95f3e6563a662674dd9ab16d0882c400bcabd53</citedby><cites>FETCH-LOGICAL-c446t-117f700bb5a2524935fe6675ff95f3e6563a662674dd9ab16d0882c400bcabd53</cites><orcidid>0000-0002-6417-4646 ; 0000-0001-5588-3443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659452/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659452/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Lu, Jianqiang</creatorcontrib><creatorcontrib>Lin, Weize</creatorcontrib><creatorcontrib>Chen, Pingfu</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><creatorcontrib>Deng, Xiaoling</creatorcontrib><creatorcontrib>Niu, Hongyu</creatorcontrib><creatorcontrib>Mo, Jiawei</creatorcontrib><creatorcontrib>Li, Jiaxing</creatorcontrib><creatorcontrib>Luo, Shengfu</creatorcontrib><title>Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization</title><title>Sensors (Basel, Switzerland)</title><description>At present, learning-based citrus blossom recognition models based on deep learning are highly complicated and have a large number of parameters. In order to estimate citrus flower quantities in natural orchards, this study proposes a lightweight citrus flower recognition model based on improved YOLOv4. In order to compress the backbone network, we utilize MobileNetv3 as a feature extractor, combined with deep separable convolution for further acceleration. The Cutout data enhancement method is also introduced to simulate citrus in nature for data enhancement. The test results show that the improved model has an mAP of 84.84%, 22% smaller than that of YOLOv4, and approximately two times faster. Compared with the Faster R-CNN, the improved citrus flower rate statistical model proposed in this study has the advantages of less memory usage and fast detection speed under the premise of ensuring a certain accuracy. Therefore, our solution can be used as a reference for the edge detection of citrus flowering.</description><subject>Acceleration</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>citrus flowering rate</subject><subject>Clustering</subject><subject>Data collection</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>edge computing</subject><subject>Edge detection</subject><subject>Flowering</subject><subject>Flowers &amp; plants</subject><subject>light weight</subject><subject>Lightweight</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Orchards</subject><subject>Recognition</subject><subject>Statistical models</subject><subject>YOLOv4</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl2L1DAUhoso7ode-A8C3ujFaL7b3AhLcdaFkYVVr0OanEwztM2YpA766-3sLIvrTRKS533IOZyqekPwB8YU_pgpoaxWVD2rzgmnfNVQip__cz6rLnLeYUwZY83L6ozxpmGK0fMq3UEGk2yP4oQ2YduXAxxX1IaS5ozWQzxACtMW3ZkC6FsxJeQSrBnQ1-hgQG0cuzCBQ4dQenQ12T4mtE5mBNQOcy6n8O2-hDH8WcJxelW98GbI8Pphv6x-rD9_b7-sNrfXN-3VZmU5l2VFSO1rjLtOGCooV0x4kLIW3ivhGUghmZGSypo7p0xHpMNNQy1fItZ0TrDL6ubkddHs9D6F0aTfOpqg7y9i2mqTllIG0IIS7LAD72nHje-UsrWQxgIxXEjaLa5PJ9d-7kZwFqaSzPBE-vRlCr3exl-6kUJxQRfBuwdBij9nyEWPIVsYBjNBnLOmEjeCccmO6Nv_0F2c07S06p4iHEvFF-r9ibIp5pzAP36GYH2cCv04FewvqEmpaw</recordid><startdate>20211127</startdate><enddate>20211127</enddate><creator>Lu, Jianqiang</creator><creator>Lin, Weize</creator><creator>Chen, Pingfu</creator><creator>Lan, Yubin</creator><creator>Deng, Xiaoling</creator><creator>Niu, Hongyu</creator><creator>Mo, Jiawei</creator><creator>Li, Jiaxing</creator><creator>Luo, Shengfu</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6417-4646</orcidid><orcidid>https://orcid.org/0000-0001-5588-3443</orcidid></search><sort><creationdate>20211127</creationdate><title>Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization</title><author>Lu, Jianqiang ; Lin, Weize ; Chen, Pingfu ; Lan, Yubin ; Deng, Xiaoling ; Niu, Hongyu ; Mo, Jiawei ; Li, Jiaxing ; Luo, Shengfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-117f700bb5a2524935fe6675ff95f3e6563a662674dd9ab16d0882c400bcabd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acceleration</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>citrus flowering rate</topic><topic>Clustering</topic><topic>Data collection</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>edge computing</topic><topic>Edge detection</topic><topic>Flowering</topic><topic>Flowers &amp; plants</topic><topic>light weight</topic><topic>Lightweight</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Orchards</topic><topic>Recognition</topic><topic>Statistical models</topic><topic>YOLOv4</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Jianqiang</creatorcontrib><creatorcontrib>Lin, Weize</creatorcontrib><creatorcontrib>Chen, Pingfu</creatorcontrib><creatorcontrib>Lan, Yubin</creatorcontrib><creatorcontrib>Deng, Xiaoling</creatorcontrib><creatorcontrib>Niu, Hongyu</creatorcontrib><creatorcontrib>Mo, Jiawei</creatorcontrib><creatorcontrib>Li, Jiaxing</creatorcontrib><creatorcontrib>Luo, Shengfu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Jianqiang</au><au>Lin, Weize</au><au>Chen, Pingfu</au><au>Lan, Yubin</au><au>Deng, Xiaoling</au><au>Niu, Hongyu</au><au>Mo, Jiawei</au><au>Li, Jiaxing</au><au>Luo, Shengfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2021-11-27</date><risdate>2021</risdate><volume>21</volume><issue>23</issue><spage>7929</spage><pages>7929-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>At present, learning-based citrus blossom recognition models based on deep learning are highly complicated and have a large number of parameters. In order to estimate citrus flower quantities in natural orchards, this study proposes a lightweight citrus flower recognition model based on improved YOLOv4. In order to compress the backbone network, we utilize MobileNetv3 as a feature extractor, combined with deep separable convolution for further acceleration. The Cutout data enhancement method is also introduced to simulate citrus in nature for data enhancement. The test results show that the improved model has an mAP of 84.84%, 22% smaller than that of YOLOv4, and approximately two times faster. Compared with the Faster R-CNN, the improved citrus flower rate statistical model proposed in this study has the advantages of less memory usage and fast detection speed under the premise of ensuring a certain accuracy. Therefore, our solution can be used as a reference for the edge detection of citrus flowering.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>34883932</pmid><doi>10.3390/s21237929</doi><orcidid>https://orcid.org/0000-0002-6417-4646</orcidid><orcidid>https://orcid.org/0000-0001-5588-3443</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-11, Vol.21 (23), p.7929
issn 1424-8220
1424-8220
language eng
recordid cdi_proquest_journals_2608140694
source MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acceleration
Accuracy
Algorithms
citrus flowering rate
Clustering
Data collection
Datasets
Deep learning
edge computing
Edge detection
Flowering
Flowers & plants
light weight
Lightweight
Methods
Neural networks
Orchards
Recognition
Statistical models
YOLOv4
title Research on Lightweight Citrus Flowering Rate Statistical Model Combined with Anchor Frame Clustering Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A43%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Lightweight%20Citrus%20Flowering%20Rate%20Statistical%20Model%20Combined%20with%20Anchor%20Frame%20Clustering%20Optimization&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Lu,%20Jianqiang&rft.date=2021-11-27&rft.volume=21&rft.issue=23&rft.spage=7929&rft.pages=7929-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21237929&rft_dat=%3Cproquest_doaj_%3E2608534632%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608140694&rft_id=info:pmid/34883932&rft_doaj_id=oai_doaj_org_article_5210d0deff2b4afb99c756ace1a4562b&rfr_iscdi=true