Design Space Exploration of Hybrid Quantum–Classical Neural Networks

The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2021-12, Vol.10 (23), p.2980
Hauptverfasser: Kashif, Muhammad, Al-Kuwari, Saif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 2980
container_title Electronics (Basel)
container_volume 10
creator Kashif, Muhammad
Al-Kuwari, Saif
description The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.
doi_str_mv 10.3390/electronics10232980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608082936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608082936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</originalsourceid><addsrcrecordid>eNptkM9Kw0AYxBdRsNQ-gZeA5-iX70ua3aPU1gpFEfUcNvtHUtNs3E3Q3voOvqFPYrQePDiXmcOPGRjGThM4JxJwYWqjOu-aSoUEkFBwOGAjhFzEAgUe_snHbBLCGgaJhDjBiC2uTKiem-ihlcpE8_e2dl52lWsiZ6PltvSVju572XT95nP3MatlCJWSdXRrev9j3ZvzL-GEHVlZBzP59TF7WswfZ8t4dXd9M7tcxYoQu9jmuVZK0xR4mZWYIlfGasUhEzaTcqqktTxRiKBLgSrNdA42FSLDnCjVnMbsbN_bevfam9AVa9f7ZpgscCgFjoKmA0V7SnkXgje2aH21kX5bJFB8f1b88xl9AcSPY44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608082936</pqid></control><display><type>article</type><title>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kashif, Muhammad ; Al-Kuwari, Saif</creator><creatorcontrib>Kashif, Muhammad ; Al-Kuwari, Saif</creatorcontrib><description>The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10232980</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Big Data ; Business metrics ; Circuits ; Computers ; Datasets ; Deep learning ; Design ; Fault tolerance ; Machine learning ; Neural networks ; Quantum computers ; Quantum computing ; Space exploration</subject><ispartof>Electronics (Basel), 2021-12, Vol.10 (23), p.2980</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</citedby><cites>FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</cites><orcidid>0000-0002-4402-7710 ; 0000-0003-2023-6371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kashif, Muhammad</creatorcontrib><creatorcontrib>Al-Kuwari, Saif</creatorcontrib><title>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</title><title>Electronics (Basel)</title><description>The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Business metrics</subject><subject>Circuits</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Design</subject><subject>Fault tolerance</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Space exploration</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkM9Kw0AYxBdRsNQ-gZeA5-iX70ua3aPU1gpFEfUcNvtHUtNs3E3Q3voOvqFPYrQePDiXmcOPGRjGThM4JxJwYWqjOu-aSoUEkFBwOGAjhFzEAgUe_snHbBLCGgaJhDjBiC2uTKiem-ihlcpE8_e2dl52lWsiZ6PltvSVju572XT95nP3MatlCJWSdXRrev9j3ZvzL-GEHVlZBzP59TF7WswfZ8t4dXd9M7tcxYoQu9jmuVZK0xR4mZWYIlfGasUhEzaTcqqktTxRiKBLgSrNdA42FSLDnCjVnMbsbN_bevfam9AVa9f7ZpgscCgFjoKmA0V7SnkXgje2aH21kX5bJFB8f1b88xl9AcSPY44</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kashif, Muhammad</creator><creator>Al-Kuwari, Saif</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4402-7710</orcidid><orcidid>https://orcid.org/0000-0003-2023-6371</orcidid></search><sort><creationdate>20211201</creationdate><title>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</title><author>Kashif, Muhammad ; Al-Kuwari, Saif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Business metrics</topic><topic>Circuits</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Design</topic><topic>Fault tolerance</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Space exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashif, Muhammad</creatorcontrib><creatorcontrib>Al-Kuwari, Saif</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashif, Muhammad</au><au>Al-Kuwari, Saif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>23</issue><spage>2980</spage><pages>2980-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10232980</doi><orcidid>https://orcid.org/0000-0002-4402-7710</orcidid><orcidid>https://orcid.org/0000-0003-2023-6371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2021-12, Vol.10 (23), p.2980
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2608082936
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Algorithms
Artificial intelligence
Big Data
Business metrics
Circuits
Computers
Datasets
Deep learning
Design
Fault tolerance
Machine learning
Neural networks
Quantum computers
Quantum computing
Space exploration
title Design Space Exploration of Hybrid Quantum–Classical Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Space%20Exploration%20of%20Hybrid%20Quantum%E2%80%93Classical%20Neural%20Networks&rft.jtitle=Electronics%20(Basel)&rft.au=Kashif,%20Muhammad&rft.date=2021-12-01&rft.volume=10&rft.issue=23&rft.spage=2980&rft.pages=2980-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10232980&rft_dat=%3Cproquest_cross%3E2608082936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608082936&rft_id=info:pmid/&rfr_iscdi=true