Design Space Exploration of Hybrid Quantum–Classical Neural Networks
The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-12, Vol.10 (23), p.2980 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | 2980 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Kashif, Muhammad Al-Kuwari, Saif |
description | The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage. |
doi_str_mv | 10.3390/electronics10232980 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608082936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608082936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</originalsourceid><addsrcrecordid>eNptkM9Kw0AYxBdRsNQ-gZeA5-iX70ua3aPU1gpFEfUcNvtHUtNs3E3Q3voOvqFPYrQePDiXmcOPGRjGThM4JxJwYWqjOu-aSoUEkFBwOGAjhFzEAgUe_snHbBLCGgaJhDjBiC2uTKiem-ihlcpE8_e2dl52lWsiZ6PltvSVju572XT95nP3MatlCJWSdXRrev9j3ZvzL-GEHVlZBzP59TF7WswfZ8t4dXd9M7tcxYoQu9jmuVZK0xR4mZWYIlfGasUhEzaTcqqktTxRiKBLgSrNdA42FSLDnCjVnMbsbN_bevfam9AVa9f7ZpgscCgFjoKmA0V7SnkXgje2aH21kX5bJFB8f1b88xl9AcSPY44</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608082936</pqid></control><display><type>article</type><title>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kashif, Muhammad ; Al-Kuwari, Saif</creator><creatorcontrib>Kashif, Muhammad ; Al-Kuwari, Saif</creatorcontrib><description>The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10232980</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Big Data ; Business metrics ; Circuits ; Computers ; Datasets ; Deep learning ; Design ; Fault tolerance ; Machine learning ; Neural networks ; Quantum computers ; Quantum computing ; Space exploration</subject><ispartof>Electronics (Basel), 2021-12, Vol.10 (23), p.2980</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</citedby><cites>FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</cites><orcidid>0000-0002-4402-7710 ; 0000-0003-2023-6371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kashif, Muhammad</creatorcontrib><creatorcontrib>Al-Kuwari, Saif</creatorcontrib><title>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</title><title>Electronics (Basel)</title><description>The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Big Data</subject><subject>Business metrics</subject><subject>Circuits</subject><subject>Computers</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Design</subject><subject>Fault tolerance</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Space exploration</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkM9Kw0AYxBdRsNQ-gZeA5-iX70ua3aPU1gpFEfUcNvtHUtNs3E3Q3voOvqFPYrQePDiXmcOPGRjGThM4JxJwYWqjOu-aSoUEkFBwOGAjhFzEAgUe_snHbBLCGgaJhDjBiC2uTKiem-ihlcpE8_e2dl52lWsiZ6PltvSVju572XT95nP3MatlCJWSdXRrev9j3ZvzL-GEHVlZBzP59TF7WswfZ8t4dXd9M7tcxYoQu9jmuVZK0xR4mZWYIlfGasUhEzaTcqqktTxRiKBLgSrNdA42FSLDnCjVnMbsbN_bevfam9AVa9f7ZpgscCgFjoKmA0V7SnkXgje2aH21kX5bJFB8f1b88xl9AcSPY44</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Kashif, Muhammad</creator><creator>Al-Kuwari, Saif</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4402-7710</orcidid><orcidid>https://orcid.org/0000-0003-2023-6371</orcidid></search><sort><creationdate>20211201</creationdate><title>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</title><author>Kashif, Muhammad ; Al-Kuwari, Saif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-f77dccd3608b5b2428cefdc8059f5aa6caff81c220db92c45d70f499527334d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Big Data</topic><topic>Business metrics</topic><topic>Circuits</topic><topic>Computers</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Design</topic><topic>Fault tolerance</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Space exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kashif, Muhammad</creatorcontrib><creatorcontrib>Al-Kuwari, Saif</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kashif, Muhammad</au><au>Al-Kuwari, Saif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Space Exploration of Hybrid Quantum–Classical Neural Networks</atitle><jtitle>Electronics (Basel)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>23</issue><spage>2980</spage><pages>2980-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The unprecedented success of classical neural networks and the recent advances in quantum computing have motivated the research community to explore the interplay between these two technologies, leading to the so-called quantum neural networks. In fact, universal quantum computers are anticipated to both speed up and improve the accuracy of neural networks. However, whether such quantum neural networks will result in a clear advantage on noisy intermediate-scale quantum (NISQ) devices is still not clear. In this paper, we propose a systematic methodology for designing quantum layer(s) in hybrid quantum–classical neural network (HQCNN) architectures. Following our proposed methodology, we develop different variants of hybrid neural networks and compare them with pure classical architectures of equivalent size. Finally, we empirically evaluate our proposed hybrid variants and show that the addition of quantum layers does provide a noticeable computational advantage.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics10232980</doi><orcidid>https://orcid.org/0000-0002-4402-7710</orcidid><orcidid>https://orcid.org/0000-0003-2023-6371</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-12, Vol.10 (23), p.2980 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2608082936 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Artificial intelligence Big Data Business metrics Circuits Computers Datasets Deep learning Design Fault tolerance Machine learning Neural networks Quantum computers Quantum computing Space exploration |
title | Design Space Exploration of Hybrid Quantum–Classical Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A09%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Space%20Exploration%20of%20Hybrid%20Quantum%E2%80%93Classical%20Neural%20Networks&rft.jtitle=Electronics%20(Basel)&rft.au=Kashif,%20Muhammad&rft.date=2021-12-01&rft.volume=10&rft.issue=23&rft.spage=2980&rft.pages=2980-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10232980&rft_dat=%3Cproquest_cross%3E2608082936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608082936&rft_id=info:pmid/&rfr_iscdi=true |