SILAR Deposition of Metal Oxide Nanostructured Films
Methods for the fabrication of thin films with well controlled structure and properties are of great importance for the development of functional devices for a large range of applications. SILAR, the acronym for Successive Ionic Layer Adsorption and Reaction, is an evolution and combination of two o...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2021-12, Vol.17 (49), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methods for the fabrication of thin films with well controlled structure and properties are of great importance for the development of functional devices for a large range of applications. SILAR, the acronym for Successive Ionic Layer Adsorption and Reaction, is an evolution and combination of two other deposition methods, the Atomic Layer Deposition and Chemical Bath Deposition. Due to a relative simplicity and low cost, this method has gained increasing interest in the scientific community. There are, however, several aspects related to the influence of the many parameters involved, which deserve further deepening. In this review article, the basis of the method, its application to the fabrication of thin films, the importance of experimental parameters, and some recent advances in the application of oxide films are reviewed. At first the fundamental theoretical bases and experimental concepts of SILAR are discussed. Then, the fabrication of chalcogenides and metal oxides is reviewed, with special emphasis to metal oxides, trying to extract general information on the effect of experimental parameters on structural, morphological and functional properties. Finally, recent advances in the application of oxide films prepared by SILAR are described, focusing on supercapacitors, transparent electrodes, solar cells, and photoelectrochemical devices.
The fundamentals of Successive Ionic Layer Adsorption and Reaction (SILAR) are discussed, both from the point of view of theoretical basis and experimental concepts. Then, the fabrication of metal oxides film is reviewed, highlighting general information on the effect of experimental parameters on structural, morphological and functional properties. Finally, recent advances in the application of SILAR oxide films are described. |
---|---|
ISSN: | 1613-6810 1613-6829 |
DOI: | 10.1002/smll.202101666 |