Deep Surrogate Assisted MAP-Elites for Automated Hearthstone Deckbuilding
We study the problem of efficiently generating high-quality and diverse content in games. Previous work on automated deckbuilding in Hearthstone shows that the quality diversity algorithm MAP-Elites can generate a collection of high-performing decks with diverse strategic gameplay. However, MAP-Elit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-04 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Yulun Fontaine, Matthew C Hoover, Amy K Nikolaidis, Stefanos |
description | We study the problem of efficiently generating high-quality and diverse content in games. Previous work on automated deckbuilding in Hearthstone shows that the quality diversity algorithm MAP-Elites can generate a collection of high-performing decks with diverse strategic gameplay. However, MAP-Elites requires a large number of expensive evaluations to discover a diverse collection of decks. We propose assisting MAP-Elites with a deep surrogate model trained online to predict game outcomes with respect to candidate decks. MAP-Elites discovers a diverse dataset to improve the surrogate model accuracy, while the surrogate model helps guide MAP-Elites towards promising new content. In a Hearthstone deckbuilding case study, we show that our approach improves the sample efficiency of MAP-Elites and outperforms a model trained offline with random decks, as well as a linear surrogate model baseline, setting a new state-of-the-art for quality diversity approaches in automated Hearthstone deckbuilding. We include the source code for all the experiments at: https://github.com/icaros-usc/EvoStone2. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2607935660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607935660</sourcerecordid><originalsourceid>FETCH-proquest_journals_26079356603</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadB2vLWUdJww5BUHdZ-Wkzc7Zv-_8V9AM6vYfnnZBISLlim7UQMxIjdpxzoVKRJDIihxxgpOfgnG21B5ohGvRQ02N2YkVvPCBtrKNZ8Papv1CCdv6O3g5Ac7g9rsH0tRnaBZk2ukeIf52T5b647Eo2OvsKgL7qbHDDhyqheLqViVJc_ne9AVSQPCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607935660</pqid></control><display><type>article</type><title>Deep Surrogate Assisted MAP-Elites for Automated Hearthstone Deckbuilding</title><source>Free E- Journals</source><creator>Zhang, Yulun ; Fontaine, Matthew C ; Hoover, Amy K ; Nikolaidis, Stefanos</creator><creatorcontrib>Zhang, Yulun ; Fontaine, Matthew C ; Hoover, Amy K ; Nikolaidis, Stefanos</creatorcontrib><description>We study the problem of efficiently generating high-quality and diverse content in games. Previous work on automated deckbuilding in Hearthstone shows that the quality diversity algorithm MAP-Elites can generate a collection of high-performing decks with diverse strategic gameplay. However, MAP-Elites requires a large number of expensive evaluations to discover a diverse collection of decks. We propose assisting MAP-Elites with a deep surrogate model trained online to predict game outcomes with respect to candidate decks. MAP-Elites discovers a diverse dataset to improve the surrogate model accuracy, while the surrogate model helps guide MAP-Elites towards promising new content. In a Hearthstone deckbuilding case study, we show that our approach improves the sample efficiency of MAP-Elites and outperforms a model trained offline with random decks, as well as a linear surrogate model baseline, setting a new state-of-the-art for quality diversity approaches in automated Hearthstone deckbuilding. We include the source code for all the experiments at: https://github.com/icaros-usc/EvoStone2.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Automation ; Decks ; Model accuracy</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhang, Yulun</creatorcontrib><creatorcontrib>Fontaine, Matthew C</creatorcontrib><creatorcontrib>Hoover, Amy K</creatorcontrib><creatorcontrib>Nikolaidis, Stefanos</creatorcontrib><title>Deep Surrogate Assisted MAP-Elites for Automated Hearthstone Deckbuilding</title><title>arXiv.org</title><description>We study the problem of efficiently generating high-quality and diverse content in games. Previous work on automated deckbuilding in Hearthstone shows that the quality diversity algorithm MAP-Elites can generate a collection of high-performing decks with diverse strategic gameplay. However, MAP-Elites requires a large number of expensive evaluations to discover a diverse collection of decks. We propose assisting MAP-Elites with a deep surrogate model trained online to predict game outcomes with respect to candidate decks. MAP-Elites discovers a diverse dataset to improve the surrogate model accuracy, while the surrogate model helps guide MAP-Elites towards promising new content. In a Hearthstone deckbuilding case study, we show that our approach improves the sample efficiency of MAP-Elites and outperforms a model trained offline with random decks, as well as a linear surrogate model baseline, setting a new state-of-the-art for quality diversity approaches in automated Hearthstone deckbuilding. We include the source code for all the experiments at: https://github.com/icaros-usc/EvoStone2.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Decks</subject><subject>Model accuracy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadB2vLWUdJww5BUHdZ-Wkzc7Zv-_8V9AM6vYfnnZBISLlim7UQMxIjdpxzoVKRJDIihxxgpOfgnG21B5ohGvRQ02N2YkVvPCBtrKNZ8Papv1CCdv6O3g5Ac7g9rsH0tRnaBZk2ukeIf52T5b647Eo2OvsKgL7qbHDDhyqheLqViVJc_ne9AVSQPCY</recordid><startdate>20220416</startdate><enddate>20220416</enddate><creator>Zhang, Yulun</creator><creator>Fontaine, Matthew C</creator><creator>Hoover, Amy K</creator><creator>Nikolaidis, Stefanos</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220416</creationdate><title>Deep Surrogate Assisted MAP-Elites for Automated Hearthstone Deckbuilding</title><author>Zhang, Yulun ; Fontaine, Matthew C ; Hoover, Amy K ; Nikolaidis, Stefanos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26079356603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Decks</topic><topic>Model accuracy</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yulun</creatorcontrib><creatorcontrib>Fontaine, Matthew C</creatorcontrib><creatorcontrib>Hoover, Amy K</creatorcontrib><creatorcontrib>Nikolaidis, Stefanos</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yulun</au><au>Fontaine, Matthew C</au><au>Hoover, Amy K</au><au>Nikolaidis, Stefanos</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep Surrogate Assisted MAP-Elites for Automated Hearthstone Deckbuilding</atitle><jtitle>arXiv.org</jtitle><date>2022-04-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We study the problem of efficiently generating high-quality and diverse content in games. Previous work on automated deckbuilding in Hearthstone shows that the quality diversity algorithm MAP-Elites can generate a collection of high-performing decks with diverse strategic gameplay. However, MAP-Elites requires a large number of expensive evaluations to discover a diverse collection of decks. We propose assisting MAP-Elites with a deep surrogate model trained online to predict game outcomes with respect to candidate decks. MAP-Elites discovers a diverse dataset to improve the surrogate model accuracy, while the surrogate model helps guide MAP-Elites towards promising new content. In a Hearthstone deckbuilding case study, we show that our approach improves the sample efficiency of MAP-Elites and outperforms a model trained offline with random decks, as well as a linear surrogate model baseline, setting a new state-of-the-art for quality diversity approaches in automated Hearthstone deckbuilding. We include the source code for all the experiments at: https://github.com/icaros-usc/EvoStone2.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2607935660 |
source | Free E- Journals |
subjects | Algorithms Automation Decks Model accuracy |
title | Deep Surrogate Assisted MAP-Elites for Automated Hearthstone Deckbuilding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A56%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep%20Surrogate%20Assisted%20MAP-Elites%20for%20Automated%20Hearthstone%20Deckbuilding&rft.jtitle=arXiv.org&rft.au=Zhang,%20Yulun&rft.date=2022-04-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2607935660%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607935660&rft_id=info:pmid/&rfr_iscdi=true |