Enhancement of Breast Mammography to Rapid Screen Abnormalities Using 2D Spatial Fractional‐Order Feature Extraction and Multilayer Machine Vision Classifier
While breast tumor symptoms [benign (B) or malignant (M) tumors] or lymph node metastasis can be detected at an early stage, the timely discovery of abnormalities could simultaneously improve survival rates and enhance therapeutic efficacy. During first‐line mammography examination, upon finding any...
Gespeichert in:
Veröffentlicht in: | IEEJ transactions on electrical and electronic engineering 2022-01, Vol.17 (1), p.132-147 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 132 |
container_title | IEEJ transactions on electrical and electronic engineering |
container_volume | 17 |
creator | Chen, Pi‐Yun Wu, Jian‐Xing Lin, Chia‐Hung Hsu, Jin‐Chyr Pai, Neng‐Sheng |
description | While breast tumor symptoms [benign (B) or malignant (M) tumors] or lymph node metastasis can be detected at an early stage, the timely discovery of abnormalities could simultaneously improve survival rates and enhance therapeutic efficacy. During first‐line mammography examination, upon finding any solid‐white region, clinicians or radiologists can manually select the region of interest (ROI) from lateral‐view images with a specific bounding box (BB). This study used two‐dimensional (2D) fractional‐order convolution (FOC) operations with fractional‐order parameters (v = 0.3−0.4) to sharpen and retain the structure of possible focus, inhibit the features of background tissue, and remove unwanted noise. The gray‐scale values of breast mammography can be readjusted to enhance the image contrast using a nonlinear intensity transformation function. Abnormal contour levels can automatically be searched on the basis of the edge detection of normalized gradients to interpret the main ROI region using a contour algorithm. Hence, the main ROI can be rapidly identified on each breast mammography. The central region of the main ROI can then be divided into five sub ROIs, which are fed to a multilayer machine vision classifier. We used a general regression neural network (GRNN)‐based classifier to separate normal (no tumor) images from abnormal (B or M tumor) ones and obtain an automatic screening support tool that can decisively confirm suspicious lesions and achieve accurate detection. Using images from the Mammographic Image Analysis Society (MIAS) digital breast mammogram database, we applied the proposed GRNN‐based classifier with K‐fold cross‐validation to emphasize the possible focus and provide additional confidence during imaging examination. Results showed an average recall (%), an average precision (%), an average accuracy (%), and an average F1 score of 87.31%, 90.50%, 88.67%, and 0.8883%, respectively, for the rapid screening of B and M tumors on digital breast X‐ray images. The GRNN‐based classifier is superior to traditional techniques in terms of adaptive learning schemes, computational time consumption, and design cycle. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC. |
doi_str_mv | 10.1002/tee.23495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607911649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607911649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2975-8521d7c79dba5e3a466845c6e9aeeafb6674f209cbaa476e34850a65000c51533</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhiMEEuWx4AaWWLEo2IntxMtSUkCiQuK1jabOhLpKnGC7gu44AjfgbpyEQCt2rGak__tHmi-Kjhg9ZZTGZwHxNE64ElvRgKmEDbnK2Pbfnia70Z73C0q5TLJsEH3mdg5WY4M2kLYi5w7BBzKFpmmfHXTzFQktuYPOlOReO0RLRjPbugZqEwx68uiNfSbxBbnvIBioycSBDqa1UH-9f9y6Eh2ZIISlQ5K_hU1IwJZkuqyDqWHVE1PQc2ORPBn_k45r8N5UBt1BtFNB7fFwM_ejx0n-ML4a3txeXo9HN0Mdq1QMMxGzMtWpKmcgMAEuZcaFlqgAEaqZlCmvYqr0DICnEhOeCQpSUEq1YCJJ9qPj9d3OtS9L9KFYtEvXP-GLWNJUMSa56qmTNaVd673DquicacCtCkaLH_9F77_49d-zZ2v21dS4-h8sHvJ83fgGLoWKKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607911649</pqid></control><display><type>article</type><title>Enhancement of Breast Mammography to Rapid Screen Abnormalities Using 2D Spatial Fractional‐Order Feature Extraction and Multilayer Machine Vision Classifier</title><source>Wiley Online Library All Journals</source><creator>Chen, Pi‐Yun ; Wu, Jian‐Xing ; Lin, Chia‐Hung ; Hsu, Jin‐Chyr ; Pai, Neng‐Sheng</creator><creatorcontrib>Chen, Pi‐Yun ; Wu, Jian‐Xing ; Lin, Chia‐Hung ; Hsu, Jin‐Chyr ; Pai, Neng‐Sheng</creatorcontrib><description>While breast tumor symptoms [benign (B) or malignant (M) tumors] or lymph node metastasis can be detected at an early stage, the timely discovery of abnormalities could simultaneously improve survival rates and enhance therapeutic efficacy. During first‐line mammography examination, upon finding any solid‐white region, clinicians or radiologists can manually select the region of interest (ROI) from lateral‐view images with a specific bounding box (BB). This study used two‐dimensional (2D) fractional‐order convolution (FOC) operations with fractional‐order parameters (v = 0.3−0.4) to sharpen and retain the structure of possible focus, inhibit the features of background tissue, and remove unwanted noise. The gray‐scale values of breast mammography can be readjusted to enhance the image contrast using a nonlinear intensity transformation function. Abnormal contour levels can automatically be searched on the basis of the edge detection of normalized gradients to interpret the main ROI region using a contour algorithm. Hence, the main ROI can be rapidly identified on each breast mammography. The central region of the main ROI can then be divided into five sub ROIs, which are fed to a multilayer machine vision classifier. We used a general regression neural network (GRNN)‐based classifier to separate normal (no tumor) images from abnormal (B or M tumor) ones and obtain an automatic screening support tool that can decisively confirm suspicious lesions and achieve accurate detection. Using images from the Mammographic Image Analysis Society (MIAS) digital breast mammogram database, we applied the proposed GRNN‐based classifier with K‐fold cross‐validation to emphasize the possible focus and provide additional confidence during imaging examination. Results showed an average recall (%), an average precision (%), an average accuracy (%), and an average F1 score of 87.31%, 90.50%, 88.67%, and 0.8883%, respectively, for the rapid screening of B and M tumors on digital breast X‐ray images. The GRNN‐based classifier is superior to traditional techniques in terms of adaptive learning schemes, computational time consumption, and design cycle. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</description><identifier>ISSN: 1931-4973</identifier><identifier>EISSN: 1931-4981</identifier><identifier>DOI: 10.1002/tee.23495</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Abnormalities ; Algorithms ; Background noise ; bounding box ; breast mammography ; Classifiers ; Computing time ; Contours ; Digital imaging ; Edge detection ; Feature extraction ; fractional‐order convolution ; general regression neural network ; General regression neural networks ; Image analysis ; Image contrast ; Image enhancement ; lateral view image ; Machine vision ; multilayer machine vision classifier ; Multilayers ; Order parameters ; Screening ; Tumors ; Vision systems</subject><ispartof>IEEJ transactions on electrical and electronic engineering, 2022-01, Vol.17 (1), p.132-147</ispartof><rights>2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><rights>Copyright © 2022 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2975-8521d7c79dba5e3a466845c6e9aeeafb6674f209cbaa476e34850a65000c51533</citedby><cites>FETCH-LOGICAL-c2975-8521d7c79dba5e3a466845c6e9aeeafb6674f209cbaa476e34850a65000c51533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftee.23495$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftee.23495$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Chen, Pi‐Yun</creatorcontrib><creatorcontrib>Wu, Jian‐Xing</creatorcontrib><creatorcontrib>Lin, Chia‐Hung</creatorcontrib><creatorcontrib>Hsu, Jin‐Chyr</creatorcontrib><creatorcontrib>Pai, Neng‐Sheng</creatorcontrib><title>Enhancement of Breast Mammography to Rapid Screen Abnormalities Using 2D Spatial Fractional‐Order Feature Extraction and Multilayer Machine Vision Classifier</title><title>IEEJ transactions on electrical and electronic engineering</title><description>While breast tumor symptoms [benign (B) or malignant (M) tumors] or lymph node metastasis can be detected at an early stage, the timely discovery of abnormalities could simultaneously improve survival rates and enhance therapeutic efficacy. During first‐line mammography examination, upon finding any solid‐white region, clinicians or radiologists can manually select the region of interest (ROI) from lateral‐view images with a specific bounding box (BB). This study used two‐dimensional (2D) fractional‐order convolution (FOC) operations with fractional‐order parameters (v = 0.3−0.4) to sharpen and retain the structure of possible focus, inhibit the features of background tissue, and remove unwanted noise. The gray‐scale values of breast mammography can be readjusted to enhance the image contrast using a nonlinear intensity transformation function. Abnormal contour levels can automatically be searched on the basis of the edge detection of normalized gradients to interpret the main ROI region using a contour algorithm. Hence, the main ROI can be rapidly identified on each breast mammography. The central region of the main ROI can then be divided into five sub ROIs, which are fed to a multilayer machine vision classifier. We used a general regression neural network (GRNN)‐based classifier to separate normal (no tumor) images from abnormal (B or M tumor) ones and obtain an automatic screening support tool that can decisively confirm suspicious lesions and achieve accurate detection. Using images from the Mammographic Image Analysis Society (MIAS) digital breast mammogram database, we applied the proposed GRNN‐based classifier with K‐fold cross‐validation to emphasize the possible focus and provide additional confidence during imaging examination. Results showed an average recall (%), an average precision (%), an average accuracy (%), and an average F1 score of 87.31%, 90.50%, 88.67%, and 0.8883%, respectively, for the rapid screening of B and M tumors on digital breast X‐ray images. The GRNN‐based classifier is superior to traditional techniques in terms of adaptive learning schemes, computational time consumption, and design cycle. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</description><subject>Abnormalities</subject><subject>Algorithms</subject><subject>Background noise</subject><subject>bounding box</subject><subject>breast mammography</subject><subject>Classifiers</subject><subject>Computing time</subject><subject>Contours</subject><subject>Digital imaging</subject><subject>Edge detection</subject><subject>Feature extraction</subject><subject>fractional‐order convolution</subject><subject>general regression neural network</subject><subject>General regression neural networks</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image enhancement</subject><subject>lateral view image</subject><subject>Machine vision</subject><subject>multilayer machine vision classifier</subject><subject>Multilayers</subject><subject>Order parameters</subject><subject>Screening</subject><subject>Tumors</subject><subject>Vision systems</subject><issn>1931-4973</issn><issn>1931-4981</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhiMEEuWx4AaWWLEo2IntxMtSUkCiQuK1jabOhLpKnGC7gu44AjfgbpyEQCt2rGak__tHmi-Kjhg9ZZTGZwHxNE64ElvRgKmEDbnK2Pbfnia70Z73C0q5TLJsEH3mdg5WY4M2kLYi5w7BBzKFpmmfHXTzFQktuYPOlOReO0RLRjPbugZqEwx68uiNfSbxBbnvIBioycSBDqa1UH-9f9y6Eh2ZIISlQ5K_hU1IwJZkuqyDqWHVE1PQc2ORPBn_k45r8N5UBt1BtFNB7fFwM_ejx0n-ML4a3txeXo9HN0Mdq1QMMxGzMtWpKmcgMAEuZcaFlqgAEaqZlCmvYqr0DICnEhOeCQpSUEq1YCJJ9qPj9d3OtS9L9KFYtEvXP-GLWNJUMSa56qmTNaVd673DquicacCtCkaLH_9F77_49d-zZ2v21dS4-h8sHvJ83fgGLoWKKg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Chen, Pi‐Yun</creator><creator>Wu, Jian‐Xing</creator><creator>Lin, Chia‐Hung</creator><creator>Hsu, Jin‐Chyr</creator><creator>Pai, Neng‐Sheng</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>202201</creationdate><title>Enhancement of Breast Mammography to Rapid Screen Abnormalities Using 2D Spatial Fractional‐Order Feature Extraction and Multilayer Machine Vision Classifier</title><author>Chen, Pi‐Yun ; Wu, Jian‐Xing ; Lin, Chia‐Hung ; Hsu, Jin‐Chyr ; Pai, Neng‐Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2975-8521d7c79dba5e3a466845c6e9aeeafb6674f209cbaa476e34850a65000c51533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abnormalities</topic><topic>Algorithms</topic><topic>Background noise</topic><topic>bounding box</topic><topic>breast mammography</topic><topic>Classifiers</topic><topic>Computing time</topic><topic>Contours</topic><topic>Digital imaging</topic><topic>Edge detection</topic><topic>Feature extraction</topic><topic>fractional‐order convolution</topic><topic>general regression neural network</topic><topic>General regression neural networks</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image enhancement</topic><topic>lateral view image</topic><topic>Machine vision</topic><topic>multilayer machine vision classifier</topic><topic>Multilayers</topic><topic>Order parameters</topic><topic>Screening</topic><topic>Tumors</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Pi‐Yun</creatorcontrib><creatorcontrib>Wu, Jian‐Xing</creatorcontrib><creatorcontrib>Lin, Chia‐Hung</creatorcontrib><creatorcontrib>Hsu, Jin‐Chyr</creatorcontrib><creatorcontrib>Pai, Neng‐Sheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Pi‐Yun</au><au>Wu, Jian‐Xing</au><au>Lin, Chia‐Hung</au><au>Hsu, Jin‐Chyr</au><au>Pai, Neng‐Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Breast Mammography to Rapid Screen Abnormalities Using 2D Spatial Fractional‐Order Feature Extraction and Multilayer Machine Vision Classifier</atitle><jtitle>IEEJ transactions on electrical and electronic engineering</jtitle><date>2022-01</date><risdate>2022</risdate><volume>17</volume><issue>1</issue><spage>132</spage><epage>147</epage><pages>132-147</pages><issn>1931-4973</issn><eissn>1931-4981</eissn><abstract>While breast tumor symptoms [benign (B) or malignant (M) tumors] or lymph node metastasis can be detected at an early stage, the timely discovery of abnormalities could simultaneously improve survival rates and enhance therapeutic efficacy. During first‐line mammography examination, upon finding any solid‐white region, clinicians or radiologists can manually select the region of interest (ROI) from lateral‐view images with a specific bounding box (BB). This study used two‐dimensional (2D) fractional‐order convolution (FOC) operations with fractional‐order parameters (v = 0.3−0.4) to sharpen and retain the structure of possible focus, inhibit the features of background tissue, and remove unwanted noise. The gray‐scale values of breast mammography can be readjusted to enhance the image contrast using a nonlinear intensity transformation function. Abnormal contour levels can automatically be searched on the basis of the edge detection of normalized gradients to interpret the main ROI region using a contour algorithm. Hence, the main ROI can be rapidly identified on each breast mammography. The central region of the main ROI can then be divided into five sub ROIs, which are fed to a multilayer machine vision classifier. We used a general regression neural network (GRNN)‐based classifier to separate normal (no tumor) images from abnormal (B or M tumor) ones and obtain an automatic screening support tool that can decisively confirm suspicious lesions and achieve accurate detection. Using images from the Mammographic Image Analysis Society (MIAS) digital breast mammogram database, we applied the proposed GRNN‐based classifier with K‐fold cross‐validation to emphasize the possible focus and provide additional confidence during imaging examination. Results showed an average recall (%), an average precision (%), an average accuracy (%), and an average F1 score of 87.31%, 90.50%, 88.67%, and 0.8883%, respectively, for the rapid screening of B and M tumors on digital breast X‐ray images. The GRNN‐based classifier is superior to traditional techniques in terms of adaptive learning schemes, computational time consumption, and design cycle. © 2021 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/tee.23495</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1931-4973 |
ispartof | IEEJ transactions on electrical and electronic engineering, 2022-01, Vol.17 (1), p.132-147 |
issn | 1931-4973 1931-4981 |
language | eng |
recordid | cdi_proquest_journals_2607911649 |
source | Wiley Online Library All Journals |
subjects | Abnormalities Algorithms Background noise bounding box breast mammography Classifiers Computing time Contours Digital imaging Edge detection Feature extraction fractional‐order convolution general regression neural network General regression neural networks Image analysis Image contrast Image enhancement lateral view image Machine vision multilayer machine vision classifier Multilayers Order parameters Screening Tumors Vision systems |
title | Enhancement of Breast Mammography to Rapid Screen Abnormalities Using 2D Spatial Fractional‐Order Feature Extraction and Multilayer Machine Vision Classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T12%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Breast%20Mammography%20to%20Rapid%20Screen%20Abnormalities%20Using%202D%20Spatial%20Fractional%E2%80%90Order%20Feature%20Extraction%20and%20Multilayer%20Machine%20Vision%20Classifier&rft.jtitle=IEEJ%20transactions%20on%20electrical%20and%20electronic%20engineering&rft.au=Chen,%20Pi%E2%80%90Yun&rft.date=2022-01&rft.volume=17&rft.issue=1&rft.spage=132&rft.epage=147&rft.pages=132-147&rft.issn=1931-4973&rft.eissn=1931-4981&rft_id=info:doi/10.1002/tee.23495&rft_dat=%3Cproquest_cross%3E2607911649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607911649&rft_id=info:pmid/&rfr_iscdi=true |