Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances
Metallic nanostructures acting as optical nanoantennas can significantly enhance the photoluminescence (PL) of nearby emitters. Albeit luminescence enhancement factors of several orders of magnitude have been reported for quantum dots or molecules, in the case of bulk emitters, the magnitude of the...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2021-12, Vol.130 (22) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 130 |
creator | Simon, Thomas Kostcheev, Sergei Rumyantseva, Anna Béal, Jérémie Gérard, Davy Martin, Jérôme |
description | Metallic nanostructures acting as optical nanoantennas can significantly enhance the photoluminescence (PL) of nearby emitters. Albeit luminescence enhancement factors of several orders of magnitude have been reported for quantum dots or molecules, in the case of bulk emitters, the magnitude of the plasmonic enhancement is strongly hindered by the weak spatial overlap between the active medium and the electromagnetic modes of the nanoantenna. Here, we propose a solid-state ultraviolet emitter based on a thin film of zinc oxide (ZnO) coupled with an array of aluminum (Al) nanoparticles. The Al nanorod array is designed to sustain surface lattice resonances (SLRs) in the near ultraviolet, which are hybrid modes exhibiting a Fano-like lineshape with narrowed linewidth relatively to the non-hybridized plasmonic modes. By changing both the period of the array and the dimensions of the nanorods, the generated SLR is tuned either to the near band-edge (NBE) emission of ZnO or to the excitation wavelength. We experimentally demonstrate that NBE emission can be increased up to a factor of 3 compared to bare ZnO. The underlying PL enhancement mechanisms are experimentally investigated and compared with numerical simulations. We also demonstrate that SLRs are more efficient for the ZnO luminescence enhancement compared to localized surface plasmon resonances. |
doi_str_mv | 10.1063/5.0073588 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2607899919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607899919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-c8af62eeceadce839c5a3c5122f9841ed8525ea1ac599dfb4de4f06ac5cc70693</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB8L_0HAlcLUm5nJTLKsxRcU3OjGTYiZG5syzdQkU_HfO6VSBcHV4V4-Pg6HkDMGYwZVccXHAHXBhdgjIwZCZjXnsE9GADnLhKzlITmKcQHAmCjkiNhr7ZsMmzekuHQxus5T9HPtDS7RJ-o8jas-JQzY0Bf_SNN8eFnXLiP9cGlO-zYFvXZdi4nGPlhtkLY6JTdkwNj5jSqekAOr24in33lMnm9vnqb32ezx7mE6mWWmkFXKjNC2yhEN6sbgUNBwXRjO8txKUTJsBM85aqYNl7Kxr2WDpYVqOI2poZLFMbnYeue6Vavgljp8qk47dT-Zqc0PirIGAWLNBvZ8y65C995jTGrR9cEP9VReQS2klOyX0YQuxoB2p2WgNpMrrr4nH9jLLRuNSzoNW-7gdRd-QLVq7H_wX_MXBPeQ7w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607899919</pqid></control><display><type>article</type><title>Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Simon, Thomas ; Kostcheev, Sergei ; Rumyantseva, Anna ; Béal, Jérémie ; Gérard, Davy ; Martin, Jérôme</creator><creatorcontrib>Simon, Thomas ; Kostcheev, Sergei ; Rumyantseva, Anna ; Béal, Jérémie ; Gérard, Davy ; Martin, Jérôme</creatorcontrib><description>Metallic nanostructures acting as optical nanoantennas can significantly enhance the photoluminescence (PL) of nearby emitters. Albeit luminescence enhancement factors of several orders of magnitude have been reported for quantum dots or molecules, in the case of bulk emitters, the magnitude of the plasmonic enhancement is strongly hindered by the weak spatial overlap between the active medium and the electromagnetic modes of the nanoantenna. Here, we propose a solid-state ultraviolet emitter based on a thin film of zinc oxide (ZnO) coupled with an array of aluminum (Al) nanoparticles. The Al nanorod array is designed to sustain surface lattice resonances (SLRs) in the near ultraviolet, which are hybrid modes exhibiting a Fano-like lineshape with narrowed linewidth relatively to the non-hybridized plasmonic modes. By changing both the period of the array and the dimensions of the nanorods, the generated SLR is tuned either to the near band-edge (NBE) emission of ZnO or to the excitation wavelength. We experimentally demonstrate that NBE emission can be increased up to a factor of 3 compared to bare ZnO. The underlying PL enhancement mechanisms are experimentally investigated and compared with numerical simulations. We also demonstrate that SLRs are more efficient for the ZnO luminescence enhancement compared to localized surface plasmon resonances.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0073588</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum ; Applied physics ; Arrays ; Condensed Matter ; Emission ; Emitters ; Engineering Sciences ; Hybrid modes ; Lattice vibration ; Luminescence ; Micro and nanotechnologies ; Microelectronics ; Nanoparticles ; Nanorods ; Optics ; Photoluminescence ; Physics ; Plasmonics ; Quantum dots ; Thin films ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of applied physics, 2021-12, Vol.130 (22)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-c8af62eeceadce839c5a3c5122f9841ed8525ea1ac599dfb4de4f06ac5cc70693</citedby><cites>FETCH-LOGICAL-c396t-c8af62eeceadce839c5a3c5122f9841ed8525ea1ac599dfb4de4f06ac5cc70693</cites><orcidid>0000-0001-6761-5841 ; 0000-0003-4789-9888 ; 0000-0003-0538-0594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0073588$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://utt.hal.science/hal-03470808$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Simon, Thomas</creatorcontrib><creatorcontrib>Kostcheev, Sergei</creatorcontrib><creatorcontrib>Rumyantseva, Anna</creatorcontrib><creatorcontrib>Béal, Jérémie</creatorcontrib><creatorcontrib>Gérard, Davy</creatorcontrib><creatorcontrib>Martin, Jérôme</creatorcontrib><title>Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances</title><title>Journal of applied physics</title><description>Metallic nanostructures acting as optical nanoantennas can significantly enhance the photoluminescence (PL) of nearby emitters. Albeit luminescence enhancement factors of several orders of magnitude have been reported for quantum dots or molecules, in the case of bulk emitters, the magnitude of the plasmonic enhancement is strongly hindered by the weak spatial overlap between the active medium and the electromagnetic modes of the nanoantenna. Here, we propose a solid-state ultraviolet emitter based on a thin film of zinc oxide (ZnO) coupled with an array of aluminum (Al) nanoparticles. The Al nanorod array is designed to sustain surface lattice resonances (SLRs) in the near ultraviolet, which are hybrid modes exhibiting a Fano-like lineshape with narrowed linewidth relatively to the non-hybridized plasmonic modes. By changing both the period of the array and the dimensions of the nanorods, the generated SLR is tuned either to the near band-edge (NBE) emission of ZnO or to the excitation wavelength. We experimentally demonstrate that NBE emission can be increased up to a factor of 3 compared to bare ZnO. The underlying PL enhancement mechanisms are experimentally investigated and compared with numerical simulations. We also demonstrate that SLRs are more efficient for the ZnO luminescence enhancement compared to localized surface plasmon resonances.</description><subject>Aluminum</subject><subject>Applied physics</subject><subject>Arrays</subject><subject>Condensed Matter</subject><subject>Emission</subject><subject>Emitters</subject><subject>Engineering Sciences</subject><subject>Hybrid modes</subject><subject>Lattice vibration</subject><subject>Luminescence</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Optics</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>Plasmonics</subject><subject>Quantum dots</subject><subject>Thin films</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB8L_0HAlcLUm5nJTLKsxRcU3OjGTYiZG5syzdQkU_HfO6VSBcHV4V4-Pg6HkDMGYwZVccXHAHXBhdgjIwZCZjXnsE9GADnLhKzlITmKcQHAmCjkiNhr7ZsMmzekuHQxus5T9HPtDS7RJ-o8jas-JQzY0Bf_SNN8eFnXLiP9cGlO-zYFvXZdi4nGPlhtkLY6JTdkwNj5jSqekAOr24in33lMnm9vnqb32ezx7mE6mWWmkFXKjNC2yhEN6sbgUNBwXRjO8txKUTJsBM85aqYNl7Kxr2WDpYVqOI2poZLFMbnYeue6Vavgljp8qk47dT-Zqc0PirIGAWLNBvZ8y65C995jTGrR9cEP9VReQS2klOyX0YQuxoB2p2WgNpMrrr4nH9jLLRuNSzoNW-7gdRd-QLVq7H_wX_MXBPeQ7w</recordid><startdate>20211214</startdate><enddate>20211214</enddate><creator>Simon, Thomas</creator><creator>Kostcheev, Sergei</creator><creator>Rumyantseva, Anna</creator><creator>Béal, Jérémie</creator><creator>Gérard, Davy</creator><creator>Martin, Jérôme</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6761-5841</orcidid><orcidid>https://orcid.org/0000-0003-4789-9888</orcidid><orcidid>https://orcid.org/0000-0003-0538-0594</orcidid></search><sort><creationdate>20211214</creationdate><title>Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances</title><author>Simon, Thomas ; Kostcheev, Sergei ; Rumyantseva, Anna ; Béal, Jérémie ; Gérard, Davy ; Martin, Jérôme</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-c8af62eeceadce839c5a3c5122f9841ed8525ea1ac599dfb4de4f06ac5cc70693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Applied physics</topic><topic>Arrays</topic><topic>Condensed Matter</topic><topic>Emission</topic><topic>Emitters</topic><topic>Engineering Sciences</topic><topic>Hybrid modes</topic><topic>Lattice vibration</topic><topic>Luminescence</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Optics</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>Plasmonics</topic><topic>Quantum dots</topic><topic>Thin films</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Thomas</creatorcontrib><creatorcontrib>Kostcheev, Sergei</creatorcontrib><creatorcontrib>Rumyantseva, Anna</creatorcontrib><creatorcontrib>Béal, Jérémie</creatorcontrib><creatorcontrib>Gérard, Davy</creatorcontrib><creatorcontrib>Martin, Jérôme</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Thomas</au><au>Kostcheev, Sergei</au><au>Rumyantseva, Anna</au><au>Béal, Jérémie</au><au>Gérard, Davy</au><au>Martin, Jérôme</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances</atitle><jtitle>Journal of applied physics</jtitle><date>2021-12-14</date><risdate>2021</risdate><volume>130</volume><issue>22</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Metallic nanostructures acting as optical nanoantennas can significantly enhance the photoluminescence (PL) of nearby emitters. Albeit luminescence enhancement factors of several orders of magnitude have been reported for quantum dots or molecules, in the case of bulk emitters, the magnitude of the plasmonic enhancement is strongly hindered by the weak spatial overlap between the active medium and the electromagnetic modes of the nanoantenna. Here, we propose a solid-state ultraviolet emitter based on a thin film of zinc oxide (ZnO) coupled with an array of aluminum (Al) nanoparticles. The Al nanorod array is designed to sustain surface lattice resonances (SLRs) in the near ultraviolet, which are hybrid modes exhibiting a Fano-like lineshape with narrowed linewidth relatively to the non-hybridized plasmonic modes. By changing both the period of the array and the dimensions of the nanorods, the generated SLR is tuned either to the near band-edge (NBE) emission of ZnO or to the excitation wavelength. We experimentally demonstrate that NBE emission can be increased up to a factor of 3 compared to bare ZnO. The underlying PL enhancement mechanisms are experimentally investigated and compared with numerical simulations. We also demonstrate that SLRs are more efficient for the ZnO luminescence enhancement compared to localized surface plasmon resonances.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0073588</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6761-5841</orcidid><orcidid>https://orcid.org/0000-0003-4789-9888</orcidid><orcidid>https://orcid.org/0000-0003-0538-0594</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2021-12, Vol.130 (22) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_proquest_journals_2607899919 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aluminum Applied physics Arrays Condensed Matter Emission Emitters Engineering Sciences Hybrid modes Lattice vibration Luminescence Micro and nanotechnologies Microelectronics Nanoparticles Nanorods Optics Photoluminescence Physics Plasmonics Quantum dots Thin films Zinc oxide Zinc oxides |
title | Band-edge emission enhancement in sputtered ZnO thin films with ultraviolet surface lattice resonances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Band-edge%20emission%20enhancement%20in%20sputtered%20ZnO%20thin%20films%20with%20ultraviolet%20surface%20lattice%20resonances&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Simon,%20Thomas&rft.date=2021-12-14&rft.volume=130&rft.issue=22&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0073588&rft_dat=%3Cproquest_hal_p%3E2607899919%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607899919&rft_id=info:pmid/&rfr_iscdi=true |