Motor Fault Diagnosis Based on Scale Invariant Image Features

Traditional fault diagnosis methods are easy to be affected by different working conditions. This article proposed a motor fault diagnosis method based on visual knowledge, to reduce the impact of changes in working conditions and improve the feature extraction ability. The mapping relationship betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2022-03, Vol.18 (3), p.1605-1617
Hauptverfasser: Long, Zhuo, Zhang, Xiaofei, He, Min, Huang, Shoudao, Qin, Guojun, Song, Dianyi, Tang, Yao, Wu, Gongping, Liang, Weizhi, Shao, Haidong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1617
container_issue 3
container_start_page 1605
container_title IEEE transactions on industrial informatics
container_volume 18
creator Long, Zhuo
Zhang, Xiaofei
He, Min
Huang, Shoudao
Qin, Guojun
Song, Dianyi
Tang, Yao
Wu, Gongping
Liang, Weizhi
Shao, Haidong
description Traditional fault diagnosis methods are easy to be affected by different working conditions. This article proposed a motor fault diagnosis method based on visual knowledge, to reduce the impact of changes in working conditions and improve the feature extraction ability. The mapping relationship between actual faults and image intuitive features by symmetrized dot pattern and scale-invariant feature transform is established in this article. The fault state is obtained by statistics of the matching point with the dictionary templates generated from signals of normal and unnormal motors. Compared with other machine learning algorithms, this method does not need too much data training and learning. The efficiency of this method is validated by experiments, and the data image processing technology has great industrial application value in the field of motor fault detection or monitoring in the age of intelligence.
doi_str_mv 10.1109/TII.2021.3084615
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2607881538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9444210</ieee_id><sourcerecordid>2607881538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-f733ee708bf8f1096862360fdecbdb6907612c7f67078aab7988a3e2797811213</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6kzu8l-HDxoazVQ8WA9L5t0UlLapO4mgv_elBZPM4f3eWd4GLtFmCCCfVjm-USAwIkEkyrMztgIbYoJQAbnw55lmEgB8pJdxbgBkBqkHbHH97ZrA5_7ftvxWe3XTRvryJ99pBVvG_5Z-i3xvPnxofZNx_OdXxOfk-_6QPGaXVR-G-nmNMfsa_6ynL4li4_XfPq0SEphsUsqLSWRBlNUphqeVUYJqaBaUVmsCmVBKxSlrpQGbbwvtDXGSxLaaoMoUI7Z_bF3H9rvnmLnNm0fmuGkE2pgDGbSDCk4psrQxhiocvtQ73z4dQjuIMkNktxBkjtJGpC7I1IT0X_cpmkqEOQfF01gPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607881538</pqid></control><display><type>article</type><title>Motor Fault Diagnosis Based on Scale Invariant Image Features</title><source>IEEE Electronic Library (IEL)</source><creator>Long, Zhuo ; Zhang, Xiaofei ; He, Min ; Huang, Shoudao ; Qin, Guojun ; Song, Dianyi ; Tang, Yao ; Wu, Gongping ; Liang, Weizhi ; Shao, Haidong</creator><creatorcontrib>Long, Zhuo ; Zhang, Xiaofei ; He, Min ; Huang, Shoudao ; Qin, Guojun ; Song, Dianyi ; Tang, Yao ; Wu, Gongping ; Liang, Weizhi ; Shao, Haidong</creatorcontrib><description>Traditional fault diagnosis methods are easy to be affected by different working conditions. This article proposed a motor fault diagnosis method based on visual knowledge, to reduce the impact of changes in working conditions and improve the feature extraction ability. The mapping relationship between actual faults and image intuitive features by symmetrized dot pattern and scale-invariant feature transform is established in this article. The fault state is obtained by statistics of the matching point with the dictionary templates generated from signals of normal and unnormal motors. Compared with other machine learning algorithms, this method does not need too much data training and learning. The efficiency of this method is validated by experiments, and the data image processing technology has great industrial application value in the field of motor fault detection or monitoring in the age of intelligence.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2021.3084615</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Data mining ; Dictionaries ; Fault detection ; Fault diagnosis ; Feature extraction ; Image processing ; Industrial applications ; Invariants ; Machine learning ; Motor fault diagnosis ; scale-invariant feature transform (SIFT) ; Symmetrized dot pattern ; symmetrized dot pattern (SDP) ; Time-frequency analysis ; Transforms ; visual knowledge ; Visualization ; Working conditions</subject><ispartof>IEEE transactions on industrial informatics, 2022-03, Vol.18 (3), p.1605-1617</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-f733ee708bf8f1096862360fdecbdb6907612c7f67078aab7988a3e2797811213</citedby><cites>FETCH-LOGICAL-c291t-f733ee708bf8f1096862360fdecbdb6907612c7f67078aab7988a3e2797811213</cites><orcidid>0000-0002-6923-9605 ; 0000-0001-7106-0009 ; 0000-0002-8256-0401 ; 0000-0003-1316-0153 ; 0000-0002-8855-781X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9444210$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9444210$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Long, Zhuo</creatorcontrib><creatorcontrib>Zhang, Xiaofei</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Huang, Shoudao</creatorcontrib><creatorcontrib>Qin, Guojun</creatorcontrib><creatorcontrib>Song, Dianyi</creatorcontrib><creatorcontrib>Tang, Yao</creatorcontrib><creatorcontrib>Wu, Gongping</creatorcontrib><creatorcontrib>Liang, Weizhi</creatorcontrib><creatorcontrib>Shao, Haidong</creatorcontrib><title>Motor Fault Diagnosis Based on Scale Invariant Image Features</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Traditional fault diagnosis methods are easy to be affected by different working conditions. This article proposed a motor fault diagnosis method based on visual knowledge, to reduce the impact of changes in working conditions and improve the feature extraction ability. The mapping relationship between actual faults and image intuitive features by symmetrized dot pattern and scale-invariant feature transform is established in this article. The fault state is obtained by statistics of the matching point with the dictionary templates generated from signals of normal and unnormal motors. Compared with other machine learning algorithms, this method does not need too much data training and learning. The efficiency of this method is validated by experiments, and the data image processing technology has great industrial application value in the field of motor fault detection or monitoring in the age of intelligence.</description><subject>Algorithms</subject><subject>Data mining</subject><subject>Dictionaries</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Industrial applications</subject><subject>Invariants</subject><subject>Machine learning</subject><subject>Motor fault diagnosis</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>Symmetrized dot pattern</subject><subject>symmetrized dot pattern (SDP)</subject><subject>Time-frequency analysis</subject><subject>Transforms</subject><subject>visual knowledge</subject><subject>Visualization</subject><subject>Working conditions</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6kzu8l-HDxoazVQ8WA9L5t0UlLapO4mgv_elBZPM4f3eWd4GLtFmCCCfVjm-USAwIkEkyrMztgIbYoJQAbnw55lmEgB8pJdxbgBkBqkHbHH97ZrA5_7ftvxWe3XTRvryJ99pBVvG_5Z-i3xvPnxofZNx_OdXxOfk-_6QPGaXVR-G-nmNMfsa_6ynL4li4_XfPq0SEphsUsqLSWRBlNUphqeVUYJqaBaUVmsCmVBKxSlrpQGbbwvtDXGSxLaaoMoUI7Z_bF3H9rvnmLnNm0fmuGkE2pgDGbSDCk4psrQxhiocvtQ73z4dQjuIMkNktxBkjtJGpC7I1IT0X_cpmkqEOQfF01gPw</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Long, Zhuo</creator><creator>Zhang, Xiaofei</creator><creator>He, Min</creator><creator>Huang, Shoudao</creator><creator>Qin, Guojun</creator><creator>Song, Dianyi</creator><creator>Tang, Yao</creator><creator>Wu, Gongping</creator><creator>Liang, Weizhi</creator><creator>Shao, Haidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6923-9605</orcidid><orcidid>https://orcid.org/0000-0001-7106-0009</orcidid><orcidid>https://orcid.org/0000-0002-8256-0401</orcidid><orcidid>https://orcid.org/0000-0003-1316-0153</orcidid><orcidid>https://orcid.org/0000-0002-8855-781X</orcidid></search><sort><creationdate>20220301</creationdate><title>Motor Fault Diagnosis Based on Scale Invariant Image Features</title><author>Long, Zhuo ; Zhang, Xiaofei ; He, Min ; Huang, Shoudao ; Qin, Guojun ; Song, Dianyi ; Tang, Yao ; Wu, Gongping ; Liang, Weizhi ; Shao, Haidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-f733ee708bf8f1096862360fdecbdb6907612c7f67078aab7988a3e2797811213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Data mining</topic><topic>Dictionaries</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Industrial applications</topic><topic>Invariants</topic><topic>Machine learning</topic><topic>Motor fault diagnosis</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>Symmetrized dot pattern</topic><topic>symmetrized dot pattern (SDP)</topic><topic>Time-frequency analysis</topic><topic>Transforms</topic><topic>visual knowledge</topic><topic>Visualization</topic><topic>Working conditions</topic><toplevel>online_resources</toplevel><creatorcontrib>Long, Zhuo</creatorcontrib><creatorcontrib>Zhang, Xiaofei</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Huang, Shoudao</creatorcontrib><creatorcontrib>Qin, Guojun</creatorcontrib><creatorcontrib>Song, Dianyi</creatorcontrib><creatorcontrib>Tang, Yao</creatorcontrib><creatorcontrib>Wu, Gongping</creatorcontrib><creatorcontrib>Liang, Weizhi</creatorcontrib><creatorcontrib>Shao, Haidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Long, Zhuo</au><au>Zhang, Xiaofei</au><au>He, Min</au><au>Huang, Shoudao</au><au>Qin, Guojun</au><au>Song, Dianyi</au><au>Tang, Yao</au><au>Wu, Gongping</au><au>Liang, Weizhi</au><au>Shao, Haidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor Fault Diagnosis Based on Scale Invariant Image Features</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>18</volume><issue>3</issue><spage>1605</spage><epage>1617</epage><pages>1605-1617</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Traditional fault diagnosis methods are easy to be affected by different working conditions. This article proposed a motor fault diagnosis method based on visual knowledge, to reduce the impact of changes in working conditions and improve the feature extraction ability. The mapping relationship between actual faults and image intuitive features by symmetrized dot pattern and scale-invariant feature transform is established in this article. The fault state is obtained by statistics of the matching point with the dictionary templates generated from signals of normal and unnormal motors. Compared with other machine learning algorithms, this method does not need too much data training and learning. The efficiency of this method is validated by experiments, and the data image processing technology has great industrial application value in the field of motor fault detection or monitoring in the age of intelligence.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2021.3084615</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6923-9605</orcidid><orcidid>https://orcid.org/0000-0001-7106-0009</orcidid><orcidid>https://orcid.org/0000-0002-8256-0401</orcidid><orcidid>https://orcid.org/0000-0003-1316-0153</orcidid><orcidid>https://orcid.org/0000-0002-8855-781X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2022-03, Vol.18 (3), p.1605-1617
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2607881538
source IEEE Electronic Library (IEL)
subjects Algorithms
Data mining
Dictionaries
Fault detection
Fault diagnosis
Feature extraction
Image processing
Industrial applications
Invariants
Machine learning
Motor fault diagnosis
scale-invariant feature transform (SIFT)
Symmetrized dot pattern
symmetrized dot pattern (SDP)
Time-frequency analysis
Transforms
visual knowledge
Visualization
Working conditions
title Motor Fault Diagnosis Based on Scale Invariant Image Features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A28%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor%20Fault%20Diagnosis%20Based%20on%20Scale%20Invariant%20Image%20Features&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Long,%20Zhuo&rft.date=2022-03-01&rft.volume=18&rft.issue=3&rft.spage=1605&rft.epage=1617&rft.pages=1605-1617&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2021.3084615&rft_dat=%3Cproquest_RIE%3E2607881538%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607881538&rft_id=info:pmid/&rft_ieee_id=9444210&rfr_iscdi=true