LSV-ANet: Deep Learning on Local Structure Visualization for Feature Matching
Feature matching is a fundamental and important task in many applications of remote sensing and photogrammetry. Remote sensing images often involve complex spatial relationships due to the ground relief variations and imaging viewpoint changes. Therefore, using a pre-defined geometrical model will p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-18 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Chen, Jiaxuan Chen, Shuang Chen, Xiaoxian Yang, Yang Xing, Linjie Fan, Xiaoyan Rao, Yujing |
description | Feature matching is a fundamental and important task in many applications of remote sensing and photogrammetry. Remote sensing images often involve complex spatial relationships due to the ground relief variations and imaging viewpoint changes. Therefore, using a pre-defined geometrical model will probably lead to inferior matching accuracy. In order to find good correspondences, we propose a simple yet efficient deep learning network, which we term the "local structure visualization-attention" network (LSV-ANet). Our main aim is to transform outlier detection into a dynamic visual similarity evaluation. Specifically, we first map the local spatial distribution into a regular grid as descriptor LSV, and then customized a spatial SCale Attention (SCA) module and a spatial STructure Attention (STA) module, which explicitly allows structure manipulation and scale selection of LSV within the network. Finally, the embedded SCA and STA deduce optimal LSV for solving feature matching task by training the LSV-ANet end-to-end. In order to demonstrate the robustness and universality of our LSV-ANet, extensive experiments on various real image pairs for general feature matching are conducted and compared against eight state-of-the-art methods. The experiment results demonstrate the superiority of our method over state of the art. |
doi_str_mv | 10.1109/TGRS.2021.3062498 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2607876293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9377555</ieee_id><sourcerecordid>2607876293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3ce9d38ef775217265e80b517cdafdd33da9361755ef3d6e2830dc88cf19297a3</originalsourceid><addsrcrecordid>eNo9kMtOwzAURC0EEqXwAYhNJNYpfsQvdlWhBSkFiZZuLWNfQ6qSFCdZwNfj0orVXczMndFB6JLgESFY3yxnL4sRxZSMGBa00OoIDQjnKseiKI7RABMtcqo0PUVnbbvGmBScyAGal4tVPn6C7ja7A9hmJdhYV_V71tRZ2Ti7yRZd7F3XR8hWVdvbTfVjuyqpoYnZFOyfMred-0ipc3QS7KaFi8Mdotfp_XLykJfPs8fJuMwd1azLmQPtmYIgJadEUsFB4be0x3kbvGfMW80EkZxDYF4AVQx7p5QLRFMtLRui6_3fbWy-emg7s276WKdKQwWWSorUk1xk73KxadsIwWxj9WnjtyHY7KiZHTWzo2YO1FLmap-pAODfr1layjn7Bch3Z7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607876293</pqid></control><display><type>article</type><title>LSV-ANet: Deep Learning on Local Structure Visualization for Feature Matching</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jiaxuan ; Chen, Shuang ; Chen, Xiaoxian ; Yang, Yang ; Xing, Linjie ; Fan, Xiaoyan ; Rao, Yujing</creator><creatorcontrib>Chen, Jiaxuan ; Chen, Shuang ; Chen, Xiaoxian ; Yang, Yang ; Xing, Linjie ; Fan, Xiaoyan ; Rao, Yujing</creatorcontrib><description>Feature matching is a fundamental and important task in many applications of remote sensing and photogrammetry. Remote sensing images often involve complex spatial relationships due to the ground relief variations and imaging viewpoint changes. Therefore, using a pre-defined geometrical model will probably lead to inferior matching accuracy. In order to find good correspondences, we propose a simple yet efficient deep learning network, which we term the "local structure visualization-attention" network (LSV-ANet). Our main aim is to transform outlier detection into a dynamic visual similarity evaluation. Specifically, we first map the local spatial distribution into a regular grid as descriptor LSV, and then customized a spatial SCale Attention (SCA) module and a spatial STructure Attention (STA) module, which explicitly allows structure manipulation and scale selection of LSV within the network. Finally, the embedded SCA and STA deduce optimal LSV for solving feature matching task by training the LSV-ANet end-to-end. In order to demonstrate the robustness and universality of our LSV-ANet, extensive experiments on various real image pairs for general feature matching are conducted and compared against eight state-of-the-art methods. The experiment results demonstrate the superiority of our method over state of the art.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3062498</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Attention network ; Data analysis ; Deep learning ; Estimation ; Feature extraction ; feature matching ; image registration ; Matching ; mismatch removal ; Modules ; Outliers (statistics) ; Photogrammetry ; Remote sensing ; Spatial distribution ; Strain ; Task analysis ; Training ; Visualization</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-18</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3ce9d38ef775217265e80b517cdafdd33da9361755ef3d6e2830dc88cf19297a3</citedby><cites>FETCH-LOGICAL-c293t-3ce9d38ef775217265e80b517cdafdd33da9361755ef3d6e2830dc88cf19297a3</cites><orcidid>0000-0002-4387-9671 ; 0000-0002-4607-0501 ; 0000-0002-5452-194X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9377555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9377555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Jiaxuan</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Chen, Xiaoxian</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xing, Linjie</creatorcontrib><creatorcontrib>Fan, Xiaoyan</creatorcontrib><creatorcontrib>Rao, Yujing</creatorcontrib><title>LSV-ANet: Deep Learning on Local Structure Visualization for Feature Matching</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Feature matching is a fundamental and important task in many applications of remote sensing and photogrammetry. Remote sensing images often involve complex spatial relationships due to the ground relief variations and imaging viewpoint changes. Therefore, using a pre-defined geometrical model will probably lead to inferior matching accuracy. In order to find good correspondences, we propose a simple yet efficient deep learning network, which we term the "local structure visualization-attention" network (LSV-ANet). Our main aim is to transform outlier detection into a dynamic visual similarity evaluation. Specifically, we first map the local spatial distribution into a regular grid as descriptor LSV, and then customized a spatial SCale Attention (SCA) module and a spatial STructure Attention (STA) module, which explicitly allows structure manipulation and scale selection of LSV within the network. Finally, the embedded SCA and STA deduce optimal LSV for solving feature matching task by training the LSV-ANet end-to-end. In order to demonstrate the robustness and universality of our LSV-ANet, extensive experiments on various real image pairs for general feature matching are conducted and compared against eight state-of-the-art methods. The experiment results demonstrate the superiority of our method over state of the art.</description><subject>Adaptation models</subject><subject>Attention network</subject><subject>Data analysis</subject><subject>Deep learning</subject><subject>Estimation</subject><subject>Feature extraction</subject><subject>feature matching</subject><subject>image registration</subject><subject>Matching</subject><subject>mismatch removal</subject><subject>Modules</subject><subject>Outliers (statistics)</subject><subject>Photogrammetry</subject><subject>Remote sensing</subject><subject>Spatial distribution</subject><subject>Strain</subject><subject>Task analysis</subject><subject>Training</subject><subject>Visualization</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURC0EEqXwAYhNJNYpfsQvdlWhBSkFiZZuLWNfQ6qSFCdZwNfj0orVXczMndFB6JLgESFY3yxnL4sRxZSMGBa00OoIDQjnKseiKI7RABMtcqo0PUVnbbvGmBScyAGal4tVPn6C7ja7A9hmJdhYV_V71tRZ2Ti7yRZd7F3XR8hWVdvbTfVjuyqpoYnZFOyfMred-0ipc3QS7KaFi8Mdotfp_XLykJfPs8fJuMwd1azLmQPtmYIgJadEUsFB4be0x3kbvGfMW80EkZxDYF4AVQx7p5QLRFMtLRui6_3fbWy-emg7s276WKdKQwWWSorUk1xk73KxadsIwWxj9WnjtyHY7KiZHTWzo2YO1FLmap-pAODfr1layjn7Bch3Z7Y</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Chen, Jiaxuan</creator><creator>Chen, Shuang</creator><creator>Chen, Xiaoxian</creator><creator>Yang, Yang</creator><creator>Xing, Linjie</creator><creator>Fan, Xiaoyan</creator><creator>Rao, Yujing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4387-9671</orcidid><orcidid>https://orcid.org/0000-0002-4607-0501</orcidid><orcidid>https://orcid.org/0000-0002-5452-194X</orcidid></search><sort><creationdate>2022</creationdate><title>LSV-ANet: Deep Learning on Local Structure Visualization for Feature Matching</title><author>Chen, Jiaxuan ; Chen, Shuang ; Chen, Xiaoxian ; Yang, Yang ; Xing, Linjie ; Fan, Xiaoyan ; Rao, Yujing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3ce9d38ef775217265e80b517cdafdd33da9361755ef3d6e2830dc88cf19297a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Attention network</topic><topic>Data analysis</topic><topic>Deep learning</topic><topic>Estimation</topic><topic>Feature extraction</topic><topic>feature matching</topic><topic>image registration</topic><topic>Matching</topic><topic>mismatch removal</topic><topic>Modules</topic><topic>Outliers (statistics)</topic><topic>Photogrammetry</topic><topic>Remote sensing</topic><topic>Spatial distribution</topic><topic>Strain</topic><topic>Task analysis</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jiaxuan</creatorcontrib><creatorcontrib>Chen, Shuang</creatorcontrib><creatorcontrib>Chen, Xiaoxian</creatorcontrib><creatorcontrib>Yang, Yang</creatorcontrib><creatorcontrib>Xing, Linjie</creatorcontrib><creatorcontrib>Fan, Xiaoyan</creatorcontrib><creatorcontrib>Rao, Yujing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jiaxuan</au><au>Chen, Shuang</au><au>Chen, Xiaoxian</au><au>Yang, Yang</au><au>Xing, Linjie</au><au>Fan, Xiaoyan</au><au>Rao, Yujing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSV-ANet: Deep Learning on Local Structure Visualization for Feature Matching</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Feature matching is a fundamental and important task in many applications of remote sensing and photogrammetry. Remote sensing images often involve complex spatial relationships due to the ground relief variations and imaging viewpoint changes. Therefore, using a pre-defined geometrical model will probably lead to inferior matching accuracy. In order to find good correspondences, we propose a simple yet efficient deep learning network, which we term the "local structure visualization-attention" network (LSV-ANet). Our main aim is to transform outlier detection into a dynamic visual similarity evaluation. Specifically, we first map the local spatial distribution into a regular grid as descriptor LSV, and then customized a spatial SCale Attention (SCA) module and a spatial STructure Attention (STA) module, which explicitly allows structure manipulation and scale selection of LSV within the network. Finally, the embedded SCA and STA deduce optimal LSV for solving feature matching task by training the LSV-ANet end-to-end. In order to demonstrate the robustness and universality of our LSV-ANet, extensive experiments on various real image pairs for general feature matching are conducted and compared against eight state-of-the-art methods. The experiment results demonstrate the superiority of our method over state of the art.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3062498</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4387-9671</orcidid><orcidid>https://orcid.org/0000-0002-4607-0501</orcidid><orcidid>https://orcid.org/0000-0002-5452-194X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-18 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2607876293 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Attention network Data analysis Deep learning Estimation Feature extraction feature matching image registration Matching mismatch removal Modules Outliers (statistics) Photogrammetry Remote sensing Spatial distribution Strain Task analysis Training Visualization |
title | LSV-ANet: Deep Learning on Local Structure Visualization for Feature Matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A32%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSV-ANet:%20Deep%20Learning%20on%20Local%20Structure%20Visualization%20for%20Feature%20Matching&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Chen,%20Jiaxuan&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3062498&rft_dat=%3Cproquest_RIE%3E2607876293%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607876293&rft_id=info:pmid/&rft_ieee_id=9377555&rfr_iscdi=true |