HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT
Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels....
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.12061-12072 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12072 |
---|---|
container_issue | |
container_start_page | 12061 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 14 |
creator | Ordonez, Alvaro Accion, Alvaro Arguello, Francisco Heras, Dora B. |
description | Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time. |
doi_str_mv | 10.1109/JSTARS.2021.3129099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2607875976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9619942</ieee_id><doaj_id>oai_doaj_org_article_ad5713fa92944554aa7f80345c40bc34</doaj_id><sourcerecordid>2607875976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</originalsourceid><addsrcrecordid>eNo9UctOwzAQtBBIlMIX9BKJc4rXjzjmVhDQQBFSU87WEjslVdsUOxz697ik6ml3Z3dmRxpCRkDHAFTfvZaLybwcM8pgzIFpqvUZGTCQkILk8pwMQHOdgqDiklyFsKI0Y0rzAXmblkX6Xj7N75Ppfud82Lmq87hOig0uXTJ3yybEuWvabTJZL1vfdN-b5AGDs0mEDswEtzYpi-fFNbmocR3czbEOyefz0-Jxms4-XorHySytBM27FHNpQeXWZVAzWguUIoutjstK6hotqygFaVmtWM4sRyql5oIJLjPFIOdDUvS6tsWV2flmg35vWmzMP9D6pUHfNdXaGbRSAa9RMy2ElAJR1TnlQkYrXxUXUeu219r59ufXhc6s2l-_jfYNy6jKldQqi1e8v6p8G4J39ekrUHNIwPQJmEMC5phAZI16VuOcOzF0BloLxv8Ab0594A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875976</pqid></control><display><type>article</type><title>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ordonez, Alvaro ; Accion, Alvaro ; Arguello, Francisco ; Heras, Dora B.</creator><creatorcontrib>Ordonez, Alvaro ; Accion, Alvaro ; Arguello, Francisco ; Heras, Dora B.</creatorcontrib><description>Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3129099</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alignment ; Computer applications ; Detection ; Detectors ; Earth ; Entropy ; Feature extraction ; Hyperspectral imaging ; Image registration ; Invariants ; maximally stable extremal regions (MSER) ; Regions ; Registers ; Registration ; Remote sensing ; scale-invariant feature transform (SIFT) ; Spectral bands</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12061-12072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</citedby><cites>FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</cites><orcidid>0000-0003-2753-5390 ; 0000-0001-9279-5426 ; 0000-0002-4218-021X ; 0000-0002-5304-1426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ordonez, Alvaro</creatorcontrib><creatorcontrib>Accion, Alvaro</creatorcontrib><creatorcontrib>Arguello, Francisco</creatorcontrib><creatorcontrib>Heras, Dora B.</creatorcontrib><title>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Computer applications</subject><subject>Detection</subject><subject>Detectors</subject><subject>Earth</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image registration</subject><subject>Invariants</subject><subject>maximally stable extremal regions (MSER)</subject><subject>Regions</subject><subject>Registers</subject><subject>Registration</subject><subject>Remote sensing</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>Spectral bands</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UctOwzAQtBBIlMIX9BKJc4rXjzjmVhDQQBFSU87WEjslVdsUOxz697ik6ml3Z3dmRxpCRkDHAFTfvZaLybwcM8pgzIFpqvUZGTCQkILk8pwMQHOdgqDiklyFsKI0Y0rzAXmblkX6Xj7N75Ppfud82Lmq87hOig0uXTJ3yybEuWvabTJZL1vfdN-b5AGDs0mEDswEtzYpi-fFNbmocR3czbEOyefz0-Jxms4-XorHySytBM27FHNpQeXWZVAzWguUIoutjstK6hotqygFaVmtWM4sRyql5oIJLjPFIOdDUvS6tsWV2flmg35vWmzMP9D6pUHfNdXaGbRSAa9RMy2ElAJR1TnlQkYrXxUXUeu219r59ufXhc6s2l-_jfYNy6jKldQqi1e8v6p8G4J39ekrUHNIwPQJmEMC5phAZI16VuOcOzF0BloLxv8Ab0594A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ordonez, Alvaro</creator><creator>Accion, Alvaro</creator><creator>Arguello, Francisco</creator><creator>Heras, Dora B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2753-5390</orcidid><orcidid>https://orcid.org/0000-0001-9279-5426</orcidid><orcidid>https://orcid.org/0000-0002-4218-021X</orcidid><orcidid>https://orcid.org/0000-0002-5304-1426</orcidid></search><sort><creationdate>2021</creationdate><title>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</title><author>Ordonez, Alvaro ; Accion, Alvaro ; Arguello, Francisco ; Heras, Dora B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Computer applications</topic><topic>Detection</topic><topic>Detectors</topic><topic>Earth</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image registration</topic><topic>Invariants</topic><topic>maximally stable extremal regions (MSER)</topic><topic>Regions</topic><topic>Registers</topic><topic>Registration</topic><topic>Remote sensing</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>Spectral bands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordonez, Alvaro</creatorcontrib><creatorcontrib>Accion, Alvaro</creatorcontrib><creatorcontrib>Arguello, Francisco</creatorcontrib><creatorcontrib>Heras, Dora B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordonez, Alvaro</au><au>Accion, Alvaro</au><au>Arguello, Francisco</au><au>Heras, Dora B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>12061</spage><epage>12072</epage><pages>12061-12072</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3129099</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2753-5390</orcidid><orcidid>https://orcid.org/0000-0001-9279-5426</orcidid><orcidid>https://orcid.org/0000-0002-4218-021X</orcidid><orcidid>https://orcid.org/0000-0002-5304-1426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12061-12072 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2607875976 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Alignment Computer applications Detection Detectors Earth Entropy Feature extraction Hyperspectral imaging Image registration Invariants maximally stable extremal regions (MSER) Regions Registers Registration Remote sensing scale-invariant feature transform (SIFT) Spectral bands |
title | HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HSI-MSER:%20Hyperspectral%20Image%20Registration%20Algorithm%20Based%20on%20MSER%20and%20SIFT&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ordonez,%20Alvaro&rft.date=2021&rft.volume=14&rft.spage=12061&rft.epage=12072&rft.pages=12061-12072&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3129099&rft_dat=%3Cproquest_ieee_%3E2607875976%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607875976&rft_id=info:pmid/&rft_ieee_id=9619942&rft_doaj_id=oai_doaj_org_article_ad5713fa92944554aa7f80345c40bc34&rfr_iscdi=true |