HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT

Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2021, Vol.14, p.12061-12072
Hauptverfasser: Ordonez, Alvaro, Accion, Alvaro, Arguello, Francisco, Heras, Dora B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12072
container_issue
container_start_page 12061
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 14
creator Ordonez, Alvaro
Accion, Alvaro
Arguello, Francisco
Heras, Dora B.
description Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time.
doi_str_mv 10.1109/JSTARS.2021.3129099
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2607875976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9619942</ieee_id><doaj_id>oai_doaj_org_article_ad5713fa92944554aa7f80345c40bc34</doaj_id><sourcerecordid>2607875976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</originalsourceid><addsrcrecordid>eNo9UctOwzAQtBBIlMIX9BKJc4rXjzjmVhDQQBFSU87WEjslVdsUOxz697ik6ml3Z3dmRxpCRkDHAFTfvZaLybwcM8pgzIFpqvUZGTCQkILk8pwMQHOdgqDiklyFsKI0Y0rzAXmblkX6Xj7N75Ppfud82Lmq87hOig0uXTJ3yybEuWvabTJZL1vfdN-b5AGDs0mEDswEtzYpi-fFNbmocR3czbEOyefz0-Jxms4-XorHySytBM27FHNpQeXWZVAzWguUIoutjstK6hotqygFaVmtWM4sRyql5oIJLjPFIOdDUvS6tsWV2flmg35vWmzMP9D6pUHfNdXaGbRSAa9RMy2ElAJR1TnlQkYrXxUXUeu219r59ufXhc6s2l-_jfYNy6jKldQqi1e8v6p8G4J39ekrUHNIwPQJmEMC5phAZI16VuOcOzF0BloLxv8Ab0594A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875976</pqid></control><display><type>article</type><title>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ordonez, Alvaro ; Accion, Alvaro ; Arguello, Francisco ; Heras, Dora B.</creator><creatorcontrib>Ordonez, Alvaro ; Accion, Alvaro ; Arguello, Francisco ; Heras, Dora B.</creatorcontrib><description>Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2021.3129099</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Alignment ; Computer applications ; Detection ; Detectors ; Earth ; Entropy ; Feature extraction ; Hyperspectral imaging ; Image registration ; Invariants ; maximally stable extremal regions (MSER) ; Regions ; Registers ; Registration ; Remote sensing ; scale-invariant feature transform (SIFT) ; Spectral bands</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12061-12072</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</citedby><cites>FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</cites><orcidid>0000-0003-2753-5390 ; 0000-0001-9279-5426 ; 0000-0002-4218-021X ; 0000-0002-5304-1426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ordonez, Alvaro</creatorcontrib><creatorcontrib>Accion, Alvaro</creatorcontrib><creatorcontrib>Arguello, Francisco</creatorcontrib><creatorcontrib>Heras, Dora B.</creatorcontrib><title>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Computer applications</subject><subject>Detection</subject><subject>Detectors</subject><subject>Earth</subject><subject>Entropy</subject><subject>Feature extraction</subject><subject>Hyperspectral imaging</subject><subject>Image registration</subject><subject>Invariants</subject><subject>maximally stable extremal regions (MSER)</subject><subject>Regions</subject><subject>Registers</subject><subject>Registration</subject><subject>Remote sensing</subject><subject>scale-invariant feature transform (SIFT)</subject><subject>Spectral bands</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9UctOwzAQtBBIlMIX9BKJc4rXjzjmVhDQQBFSU87WEjslVdsUOxz697ik6ml3Z3dmRxpCRkDHAFTfvZaLybwcM8pgzIFpqvUZGTCQkILk8pwMQHOdgqDiklyFsKI0Y0rzAXmblkX6Xj7N75Ppfud82Lmq87hOig0uXTJ3yybEuWvabTJZL1vfdN-b5AGDs0mEDswEtzYpi-fFNbmocR3czbEOyefz0-Jxms4-XorHySytBM27FHNpQeXWZVAzWguUIoutjstK6hotqygFaVmtWM4sRyql5oIJLjPFIOdDUvS6tsWV2flmg35vWmzMP9D6pUHfNdXaGbRSAa9RMy2ElAJR1TnlQkYrXxUXUeu219r59ufXhc6s2l-_jfYNy6jKldQqi1e8v6p8G4J39ekrUHNIwPQJmEMC5phAZI16VuOcOzF0BloLxv8Ab0594A</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ordonez, Alvaro</creator><creator>Accion, Alvaro</creator><creator>Arguello, Francisco</creator><creator>Heras, Dora B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2753-5390</orcidid><orcidid>https://orcid.org/0000-0001-9279-5426</orcidid><orcidid>https://orcid.org/0000-0002-4218-021X</orcidid><orcidid>https://orcid.org/0000-0002-5304-1426</orcidid></search><sort><creationdate>2021</creationdate><title>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</title><author>Ordonez, Alvaro ; Accion, Alvaro ; Arguello, Francisco ; Heras, Dora B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a85d178de61f20f4a54661f9408c59fad2c0015d2f7282d3a0559342435672183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Computer applications</topic><topic>Detection</topic><topic>Detectors</topic><topic>Earth</topic><topic>Entropy</topic><topic>Feature extraction</topic><topic>Hyperspectral imaging</topic><topic>Image registration</topic><topic>Invariants</topic><topic>maximally stable extremal regions (MSER)</topic><topic>Regions</topic><topic>Registers</topic><topic>Registration</topic><topic>Remote sensing</topic><topic>scale-invariant feature transform (SIFT)</topic><topic>Spectral bands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordonez, Alvaro</creatorcontrib><creatorcontrib>Accion, Alvaro</creatorcontrib><creatorcontrib>Arguello, Francisco</creatorcontrib><creatorcontrib>Heras, Dora B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ordonez, Alvaro</au><au>Accion, Alvaro</au><au>Arguello, Francisco</au><au>Heras, Dora B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2021</date><risdate>2021</risdate><volume>14</volume><spage>12061</spage><epage>12072</epage><pages>12061-12072</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Image alignment is an essential task in many applications of hyperspectral remote sensing images. Before any processing, the images must be registered. Maximally stable extremal regions (MSER) is a feature detection algorithm that extracts regions by thresholding the image at different grey levels. These extremal regions are invariant to image transformations making them ideal for registration. The scale-invariant feature transform (SIFT) is a well-known keypoint detector and descriptor based on the construction of a Gaussian scale-space. This article presents a hyperspectral remote sensing image registration method based on MSER for feature detection and SIFT for feature description. It efficiently exploits the information contained in the different spectral bands to improve the image alignment. The experimental results over nine hyperspectral images show that the proposed method achieves a higher number of correct registration cases using less computational resources than other hyperspectral registration methods. Results are evaluated in terms of accuracy of the registration and also in terms of execution time.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2021.3129099</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2753-5390</orcidid><orcidid>https://orcid.org/0000-0001-9279-5426</orcidid><orcidid>https://orcid.org/0000-0002-4218-021X</orcidid><orcidid>https://orcid.org/0000-0002-5304-1426</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2021, Vol.14, p.12061-12072
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2607875976
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Alignment
Computer applications
Detection
Detectors
Earth
Entropy
Feature extraction
Hyperspectral imaging
Image registration
Invariants
maximally stable extremal regions (MSER)
Regions
Registers
Registration
Remote sensing
scale-invariant feature transform (SIFT)
Spectral bands
title HSI-MSER: Hyperspectral Image Registration Algorithm Based on MSER and SIFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HSI-MSER:%20Hyperspectral%20Image%20Registration%20Algorithm%20Based%20on%20MSER%20and%20SIFT&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ordonez,%20Alvaro&rft.date=2021&rft.volume=14&rft.spage=12061&rft.epage=12072&rft.pages=12061-12072&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2021.3129099&rft_dat=%3Cproquest_ieee_%3E2607875976%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607875976&rft_id=info:pmid/&rft_ieee_id=9619942&rft_doaj_id=oai_doaj_org_article_ad5713fa92944554aa7f80345c40bc34&rfr_iscdi=true