Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems

Massive multiple-input multiple-output (MIMO) is one of the most promising technologies for a user equipment (UE) to achieve a high data rate. However, massive MIMO requires channel state information (CSI) at the transmitter and the CSI overhead fed back by UEs exponentially increases as the number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2021-12, Vol.10 (12), p.2776-2780
Hauptverfasser: Jo, Sanguk, So, Jaewoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2780
container_issue 12
container_start_page 2776
container_title IEEE wireless communications letters
container_volume 10
creator Jo, Sanguk
So, Jaewoo
description Massive multiple-input multiple-output (MIMO) is one of the most promising technologies for a user equipment (UE) to achieve a high data rate. However, massive MIMO requires channel state information (CSI) at the transmitter and the CSI overhead fed back by UEs exponentially increases as the number of antennas increases. In the last years, many studies have been conducted to solve the problem of enormous CSI feedback overhead by utilizing deep learning. In this letter, we propose an adaptive lightweight convolutional neural network (CNN) in the deep learning-based MIMO CSI feedback. The proposed network adaptively finds the compression ratio to be used in the network and reduces the computational complexity of the network. Simulation results show that the proposed lightweight CNN significantly reduces the computational complexity in comparison with the conventional CsiNet while achieving the equivalent performance; and moreover the proposed network converges faster.
doi_str_mv 10.1109/LWC.2021.3117032
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2607875761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9555820</ieee_id><sourcerecordid>2607875761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a5d083a95256dc5eed65d74fb4a60dc839ca84672c4e49c22d88a003719a72913</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EElXpjsRiiTnFPscfGUugEClth4IYLdd2IIWSYqeg_nsSteoNdzc89570IHRNyZhSkt2Vb_kYCNAxo1QSBmdoAFRAAizl56edyUs0inFNuhKEAlUD9DBxZtvWvx6X9ftH--f7jvP5PLk30TucLws89d6tjP3EVRPwzMTY47NitsDLfWz9Jl6hi8p8RT86ziF6nT6-5M9JuXgq8kmZWMhomxjuiGIm48CFs7xLFdzJtFqlRhBnFcusUamQYFOfZhbAKWUIYZJmRnYJbIhuD7nb0PzsfGz1utmF7-6lBkGkklyKniIHyoYmxuArvQ31xoS9pkT3unSnS_e69FFXd3JzOKm99yc845wrIOwfZghiyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875761</pqid></control><display><type>article</type><title>Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Jo, Sanguk ; So, Jaewoo</creator><creatorcontrib>Jo, Sanguk ; So, Jaewoo</creatorcontrib><description>Massive multiple-input multiple-output (MIMO) is one of the most promising technologies for a user equipment (UE) to achieve a high data rate. However, massive MIMO requires channel state information (CSI) at the transmitter and the CSI overhead fed back by UEs exponentially increases as the number of antennas increases. In the last years, many studies have been conducted to solve the problem of enormous CSI feedback overhead by utilizing deep learning. In this letter, we propose an adaptive lightweight convolutional neural network (CNN) in the deep learning-based MIMO CSI feedback. The proposed network adaptively finds the compression ratio to be used in the network and reduces the computational complexity of the network. Simulation results show that the proposed lightweight CNN significantly reduces the computational complexity in comparison with the conventional CsiNet while achieving the equivalent performance; and moreover the proposed network converges faster.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2021.3117032</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Codes ; Complexity ; Compression ratio ; Convolution ; convolutional neural network ; Convolutional neural networks ; Costs ; CSI feedback ; Decoding ; Deep learning ; Feedback ; learning-based feedback ; Lightweight ; Massive MIMO ; MIMO communication ; OFDM ; Wireless communication</subject><ispartof>IEEE wireless communications letters, 2021-12, Vol.10 (12), p.2776-2780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a5d083a95256dc5eed65d74fb4a60dc839ca84672c4e49c22d88a003719a72913</citedby><cites>FETCH-LOGICAL-c291t-a5d083a95256dc5eed65d74fb4a60dc839ca84672c4e49c22d88a003719a72913</cites><orcidid>0000-0001-7460-2491 ; 0000-0001-7868-7197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9555820$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9555820$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jo, Sanguk</creatorcontrib><creatorcontrib>So, Jaewoo</creatorcontrib><title>Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Massive multiple-input multiple-output (MIMO) is one of the most promising technologies for a user equipment (UE) to achieve a high data rate. However, massive MIMO requires channel state information (CSI) at the transmitter and the CSI overhead fed back by UEs exponentially increases as the number of antennas increases. In the last years, many studies have been conducted to solve the problem of enormous CSI feedback overhead by utilizing deep learning. In this letter, we propose an adaptive lightweight convolutional neural network (CNN) in the deep learning-based MIMO CSI feedback. The proposed network adaptively finds the compression ratio to be used in the network and reduces the computational complexity of the network. Simulation results show that the proposed lightweight CNN significantly reduces the computational complexity in comparison with the conventional CsiNet while achieving the equivalent performance; and moreover the proposed network converges faster.</description><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Complexity</subject><subject>Compression ratio</subject><subject>Convolution</subject><subject>convolutional neural network</subject><subject>Convolutional neural networks</subject><subject>Costs</subject><subject>CSI feedback</subject><subject>Decoding</subject><subject>Deep learning</subject><subject>Feedback</subject><subject>learning-based feedback</subject><subject>Lightweight</subject><subject>Massive MIMO</subject><subject>MIMO communication</subject><subject>OFDM</subject><subject>Wireless communication</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhi0EElXpjsRiiTnFPscfGUugEClth4IYLdd2IIWSYqeg_nsSteoNdzc89570IHRNyZhSkt2Vb_kYCNAxo1QSBmdoAFRAAizl56edyUs0inFNuhKEAlUD9DBxZtvWvx6X9ftH--f7jvP5PLk30TucLws89d6tjP3EVRPwzMTY47NitsDLfWz9Jl6hi8p8RT86ziF6nT6-5M9JuXgq8kmZWMhomxjuiGIm48CFs7xLFdzJtFqlRhBnFcusUamQYFOfZhbAKWUIYZJmRnYJbIhuD7nb0PzsfGz1utmF7-6lBkGkklyKniIHyoYmxuArvQ31xoS9pkT3unSnS_e69FFXd3JzOKm99yc845wrIOwfZghiyQ</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Jo, Sanguk</creator><creator>So, Jaewoo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7460-2491</orcidid><orcidid>https://orcid.org/0000-0001-7868-7197</orcidid></search><sort><creationdate>20211201</creationdate><title>Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems</title><author>Jo, Sanguk ; So, Jaewoo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a5d083a95256dc5eed65d74fb4a60dc839ca84672c4e49c22d88a003719a72913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Complexity</topic><topic>Compression ratio</topic><topic>Convolution</topic><topic>convolutional neural network</topic><topic>Convolutional neural networks</topic><topic>Costs</topic><topic>CSI feedback</topic><topic>Decoding</topic><topic>Deep learning</topic><topic>Feedback</topic><topic>learning-based feedback</topic><topic>Lightweight</topic><topic>Massive MIMO</topic><topic>MIMO communication</topic><topic>OFDM</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Sanguk</creatorcontrib><creatorcontrib>So, Jaewoo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jo, Sanguk</au><au>So, Jaewoo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>10</volume><issue>12</issue><spage>2776</spage><epage>2780</epage><pages>2776-2780</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Massive multiple-input multiple-output (MIMO) is one of the most promising technologies for a user equipment (UE) to achieve a high data rate. However, massive MIMO requires channel state information (CSI) at the transmitter and the CSI overhead fed back by UEs exponentially increases as the number of antennas increases. In the last years, many studies have been conducted to solve the problem of enormous CSI feedback overhead by utilizing deep learning. In this letter, we propose an adaptive lightweight convolutional neural network (CNN) in the deep learning-based MIMO CSI feedback. The proposed network adaptively finds the compression ratio to be used in the network and reduces the computational complexity of the network. Simulation results show that the proposed lightweight CNN significantly reduces the computational complexity in comparison with the conventional CsiNet while achieving the equivalent performance; and moreover the proposed network converges faster.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2021.3117032</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7460-2491</orcidid><orcidid>https://orcid.org/0000-0001-7868-7197</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2021-12, Vol.10 (12), p.2776-2780
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_2607875761
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Codes
Complexity
Compression ratio
Convolution
convolutional neural network
Convolutional neural networks
Costs
CSI feedback
Decoding
Deep learning
Feedback
learning-based feedback
Lightweight
Massive MIMO
MIMO communication
OFDM
Wireless communication
title Adaptive Lightweight CNN-Based CSI Feedback for Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T22%3A24%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Lightweight%20CNN-Based%20CSI%20Feedback%20for%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Jo,%20Sanguk&rft.date=2021-12-01&rft.volume=10&rft.issue=12&rft.spage=2776&rft.epage=2780&rft.pages=2776-2780&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2021.3117032&rft_dat=%3Cproquest_RIE%3E2607875761%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607875761&rft_id=info:pmid/&rft_ieee_id=9555820&rfr_iscdi=true