Scalable and Practical Natural Gradient for Large-Scale Deep Learning
Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2022-01, Vol.44 (1), p.404-415 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 415 |
---|---|
container_issue | 1 |
container_start_page | 404 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Osawa, Kazuki Tsuji, Yohei Ueno, Yuichiro Naruse, Akira Foo, Chuan-Sheng Yokota, Rio |
description | Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad hoc modifications of batch normalization. We propose scalable and practical natural gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to models trained with first-order optimization methods, but with accelerated convergence. Furthermore, SP-NGD scales to large mini-batch sizes with a negligible computational overhead as compared to first-order methods. We evaluated SP-NGD on a benchmark task where highly optimized first-order methods are available as references: training a ResNet-50 model for image classification on ImageNet. We demonstrate convergence to a top-1 validation accuracy of 75.4 percent in 5.5 minutes using a mini-batch size of 32,768 with 1,024 GPUs, as well as an accuracy of 74.9 percent with an extremely large mini-batch size of 131,072 in 873 steps of SP-NGD. |
doi_str_mv | 10.1109/TPAMI.2020.3004354 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2607875753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9123671</ieee_id><sourcerecordid>2607875753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-7845d4db3007d242fa1d771bf6e76354d1679f289e269f0116b47e2eb82b73f43</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbP34AwoS8OIldXf2K3uUqrUQP0A9L5tkUlLSpG6Sg__era09eBqYed7h5SHkgtEJY9TcfrzdPc8nQIFOOKWCS3FAxsxwE3PJzSEZU6YgThJIRuSk65aUMiEpPyYjDlpSbWBMHt5zV7usxsg1RfTmXd5XYRO9uH7wYc68Kyps-qhsfZQ6v8B4k8DoHnEdpeh8UzWLM3JUurrD8908JZ-PDx_Tpzh9nc2nd2mcSyr7WCdCFqLIQltdgIDSsUJrlpUKtQr1C6a0KSExCMqUlDGVCY2AWQKZ5qXgp-Rm-3ft268Bu96uqi7HunYNtkNnQXCqFABjAb3-hy7bwTehnQVFdaKlljxQsKVy33adx9KufbVy_tsyajeS7a9ku5Fsd5JD6Gr3eshWWOwjf1YDcLkFKkTcnw0DrjTjPwR9fWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875753</pqid></control><display><type>article</type><title>Scalable and Practical Natural Gradient for Large-Scale Deep Learning</title><source>MEDLINE</source><source>IEEE Electronic Library (IEL)</source><creator>Osawa, Kazuki ; Tsuji, Yohei ; Ueno, Yuichiro ; Naruse, Akira ; Foo, Chuan-Sheng ; Yokota, Rio</creator><creatorcontrib>Osawa, Kazuki ; Tsuji, Yohei ; Ueno, Yuichiro ; Naruse, Akira ; Foo, Chuan-Sheng ; Yokota, Rio</creatorcontrib><description>Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad hoc modifications of batch normalization. We propose scalable and practical natural gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to models trained with first-order optimization methods, but with accelerated convergence. Furthermore, SP-NGD scales to large mini-batch sizes with a negligible computational overhead as compared to first-order methods. We evaluated SP-NGD on a benchmark task where highly optimized first-order methods are available as references: training a ResNet-50 model for image classification on ImageNet. We demonstrate convergence to a top-1 validation accuracy of 75.4 percent in 5.5 minutes using a mini-batch size of 32,768 with 1,024 GPUs, as well as an accuracy of 74.9 percent with an extremely large mini-batch size of 131,072 in 873 steps of SP-NGD.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.3004354</identifier><identifier>PMID: 32750792</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; Algorithms ; Artificial neural networks ; Benchmarking ; Computational modeling ; Convergence ; Data models ; deep convolutional neural networks ; Deep Learning ; distributed deep learning ; Image classification ; Machine learning ; Natural gradient descent ; Neural networks ; Neural Networks, Computer ; Optimization ; Servers ; Stochastic processes ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-01, Vol.44 (1), p.404-415</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-7845d4db3007d242fa1d771bf6e76354d1679f289e269f0116b47e2eb82b73f43</citedby><cites>FETCH-LOGICAL-c505t-7845d4db3007d242fa1d771bf6e76354d1679f289e269f0116b47e2eb82b73f43</cites><orcidid>0000-0001-8108-2324 ; 0000-0001-6390-9797 ; 0000-0001-8763-2075 ; 0000-0002-3140-0854 ; 0000-0002-4748-5792 ; 0000-0001-7573-7873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9123671$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32750792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Osawa, Kazuki</creatorcontrib><creatorcontrib>Tsuji, Yohei</creatorcontrib><creatorcontrib>Ueno, Yuichiro</creatorcontrib><creatorcontrib>Naruse, Akira</creatorcontrib><creatorcontrib>Foo, Chuan-Sheng</creatorcontrib><creatorcontrib>Yokota, Rio</creatorcontrib><title>Scalable and Practical Natural Gradient for Large-Scale Deep Learning</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad hoc modifications of batch normalization. We propose scalable and practical natural gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to models trained with first-order optimization methods, but with accelerated convergence. Furthermore, SP-NGD scales to large mini-batch sizes with a negligible computational overhead as compared to first-order methods. We evaluated SP-NGD on a benchmark task where highly optimized first-order methods are available as references: training a ResNet-50 model for image classification on ImageNet. We demonstrate convergence to a top-1 validation accuracy of 75.4 percent in 5.5 minutes using a mini-batch size of 32,768 with 1,024 GPUs, as well as an accuracy of 74.9 percent with an extremely large mini-batch size of 131,072 in 873 steps of SP-NGD.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Benchmarking</subject><subject>Computational modeling</subject><subject>Convergence</subject><subject>Data models</subject><subject>deep convolutional neural networks</subject><subject>Deep Learning</subject><subject>distributed deep learning</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Natural gradient descent</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Optimization</subject><subject>Servers</subject><subject>Stochastic processes</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1Lw0AQhhdRbP34AwoS8OIldXf2K3uUqrUQP0A9L5tkUlLSpG6Sg__era09eBqYed7h5SHkgtEJY9TcfrzdPc8nQIFOOKWCS3FAxsxwE3PJzSEZU6YgThJIRuSk65aUMiEpPyYjDlpSbWBMHt5zV7usxsg1RfTmXd5XYRO9uH7wYc68Kyps-qhsfZQ6v8B4k8DoHnEdpeh8UzWLM3JUurrD8908JZ-PDx_Tpzh9nc2nd2mcSyr7WCdCFqLIQltdgIDSsUJrlpUKtQr1C6a0KSExCMqUlDGVCY2AWQKZ5qXgp-Rm-3ft268Bu96uqi7HunYNtkNnQXCqFABjAb3-hy7bwTehnQVFdaKlljxQsKVy33adx9KufbVy_tsyajeS7a9ku5Fsd5JD6Gr3eshWWOwjf1YDcLkFKkTcnw0DrjTjPwR9fWI</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Osawa, Kazuki</creator><creator>Tsuji, Yohei</creator><creator>Ueno, Yuichiro</creator><creator>Naruse, Akira</creator><creator>Foo, Chuan-Sheng</creator><creator>Yokota, Rio</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8108-2324</orcidid><orcidid>https://orcid.org/0000-0001-6390-9797</orcidid><orcidid>https://orcid.org/0000-0001-8763-2075</orcidid><orcidid>https://orcid.org/0000-0002-3140-0854</orcidid><orcidid>https://orcid.org/0000-0002-4748-5792</orcidid><orcidid>https://orcid.org/0000-0001-7573-7873</orcidid></search><sort><creationdate>20220101</creationdate><title>Scalable and Practical Natural Gradient for Large-Scale Deep Learning</title><author>Osawa, Kazuki ; Tsuji, Yohei ; Ueno, Yuichiro ; Naruse, Akira ; Foo, Chuan-Sheng ; Yokota, Rio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-7845d4db3007d242fa1d771bf6e76354d1679f289e269f0116b47e2eb82b73f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Benchmarking</topic><topic>Computational modeling</topic><topic>Convergence</topic><topic>Data models</topic><topic>deep convolutional neural networks</topic><topic>Deep Learning</topic><topic>distributed deep learning</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Natural gradient descent</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Optimization</topic><topic>Servers</topic><topic>Stochastic processes</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osawa, Kazuki</creatorcontrib><creatorcontrib>Tsuji, Yohei</creatorcontrib><creatorcontrib>Ueno, Yuichiro</creatorcontrib><creatorcontrib>Naruse, Akira</creatorcontrib><creatorcontrib>Foo, Chuan-Sheng</creatorcontrib><creatorcontrib>Yokota, Rio</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osawa, Kazuki</au><au>Tsuji, Yohei</au><au>Ueno, Yuichiro</au><au>Naruse, Akira</au><au>Foo, Chuan-Sheng</au><au>Yokota, Rio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scalable and Practical Natural Gradient for Large-Scale Deep Learning</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>44</volume><issue>1</issue><spage>404</spage><epage>415</epage><pages>404-415</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Large-scale distributed training of deep neural networks results in models with worse generalization performance as a result of the increase in the effective mini-batch size. Previous approaches attempt to address this problem by varying the learning rate and batch size over epochs and layers, or ad hoc modifications of batch normalization. We propose scalable and practical natural gradient descent (SP-NGD), a principled approach for training models that allows them to attain similar generalization performance to models trained with first-order optimization methods, but with accelerated convergence. Furthermore, SP-NGD scales to large mini-batch sizes with a negligible computational overhead as compared to first-order methods. We evaluated SP-NGD on a benchmark task where highly optimized first-order methods are available as references: training a ResNet-50 model for image classification on ImageNet. We demonstrate convergence to a top-1 validation accuracy of 75.4 percent in 5.5 minutes using a mini-batch size of 32,768 with 1,024 GPUs, as well as an accuracy of 74.9 percent with an extremely large mini-batch size of 131,072 in 873 steps of SP-NGD.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32750792</pmid><doi>10.1109/TPAMI.2020.3004354</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8108-2324</orcidid><orcidid>https://orcid.org/0000-0001-6390-9797</orcidid><orcidid>https://orcid.org/0000-0001-8763-2075</orcidid><orcidid>https://orcid.org/0000-0002-3140-0854</orcidid><orcidid>https://orcid.org/0000-0002-4748-5792</orcidid><orcidid>https://orcid.org/0000-0001-7573-7873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-01, Vol.44 (1), p.404-415 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2607875753 |
source | MEDLINE; IEEE Electronic Library (IEL) |
subjects | Accuracy Algorithms Artificial neural networks Benchmarking Computational modeling Convergence Data models deep convolutional neural networks Deep Learning distributed deep learning Image classification Machine learning Natural gradient descent Neural networks Neural Networks, Computer Optimization Servers Stochastic processes Training |
title | Scalable and Practical Natural Gradient for Large-Scale Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scalable%20and%20Practical%20Natural%20Gradient%20for%20Large-Scale%20Deep%20Learning&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Osawa,%20Kazuki&rft.date=2022-01-01&rft.volume=44&rft.issue=1&rft.spage=404&rft.epage=415&rft.pages=404-415&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.3004354&rft_dat=%3Cproquest_ieee_%3E2607875753%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607875753&rft_id=info:pmid/32750792&rft_ieee_id=9123671&rfr_iscdi=true |