Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity
The precipitation hardened, high strength aerospace alloys (e.g. Al 7000 alloy series) suffer from loss of fracture toughness due to the heat treatment leading to intergranular ductile fracture. Depending on the quenching and aging processes, large precipitates at the grain boundaries with wide prec...
Gespeichert in:
Veröffentlicht in: | International journal of plasticity 2021-12, Vol.147, p.103123, Article 103123 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103123 |
container_title | International journal of plasticity |
container_volume | 147 |
creator | Yalçinkaya, T. Tandoğan, İ.T. Özdemir, İ. |
description | The precipitation hardened, high strength aerospace alloys (e.g. Al 7000 alloy series) suffer from loss of fracture toughness due to the heat treatment leading to intergranular ductile fracture. Depending on the quenching and aging processes, large precipitates at the grain boundaries with wide precipitate free zones might develop. Therefore the grain boundaries constitute a potential location for micro void formation and evolution under the effect of external loads. This is a common problem of such materials where there is considerable ductile intergranular fracture, which is normally attributed to the embrittlement effects of the environment in other type of alloys. In this context, for the modeling of such a degradation process, the current paper develops a physics based intergranular cracking model of polycrystalline materials where a strain gradient crystal plasticity model is combined with cohesive zone elements whose traction separation relation is based on the evolution of micro-voids at the grain boundaries. The framework successfully predicts the intergranular crack formation and propagation, taking into account different microstructural features, such as porosity, pore shape, grain orientation distribution, and grain boundary conditions.
•A micromechanics based inter-granular ductile fracture framework is developed.•A strain gradient crystal plasticity model is combined with a micromechanics based cohesive zone framework.•The traction separation relations are based on the evolution of micro-voids at the grain boundaries.•The framework successfully predicts the inter-granular cracking in micron sized specimens. |
doi_str_mv | 10.1016/j.ijplas.2021.103123 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607714046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0749641921001911</els_id><sourcerecordid>2607714046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e50647022ce68c192d51c02d4c84edd266da216c260bd48cf49a181ef01d19663</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLg-vEPPAQ8d81L07S9CLL4BQte1GvIJq9rSm3XJFX6702pZ08D783MezOEXAFbAwN5065de-h0WHPGIY1y4PkRWUFV1hmHQhyTFStFnUkB9Sk5C6FljBVVDiui3gdn6d4PP_GD7nRAS10f0Wd7r_ux057a0UTXIW28NnH0mPY0RK8TJI512Ed6GLrJ-ClE3XWuRzo_E51xcbogJ43uAl7-4Tl5e7h_3Txl25fH583dNjN5LmKGBZOiZJwblJWBmtsCDONWmEqgtVxKqzlIwyXbWVGZRtQaKsCGgYVayvycXC--Bz98jRiiaofR9-mkSpqyBMHEzBILy_ghBI-NOnj3qf2kgKm5StWqpUo1V6mWKpPsdpFhSvDt0KtgUm6D1nk0UdnB_W_wC6Myf7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607714046</pqid></control><display><type>article</type><title>Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yalçinkaya, T. ; Tandoğan, İ.T. ; Özdemir, İ.</creator><creatorcontrib>Yalçinkaya, T. ; Tandoğan, İ.T. ; Özdemir, İ.</creatorcontrib><description>The precipitation hardened, high strength aerospace alloys (e.g. Al 7000 alloy series) suffer from loss of fracture toughness due to the heat treatment leading to intergranular ductile fracture. Depending on the quenching and aging processes, large precipitates at the grain boundaries with wide precipitate free zones might develop. Therefore the grain boundaries constitute a potential location for micro void formation and evolution under the effect of external loads. This is a common problem of such materials where there is considerable ductile intergranular fracture, which is normally attributed to the embrittlement effects of the environment in other type of alloys. In this context, for the modeling of such a degradation process, the current paper develops a physics based intergranular cracking model of polycrystalline materials where a strain gradient crystal plasticity model is combined with cohesive zone elements whose traction separation relation is based on the evolution of micro-voids at the grain boundaries. The framework successfully predicts the intergranular crack formation and propagation, taking into account different microstructural features, such as porosity, pore shape, grain orientation distribution, and grain boundary conditions.
•A micromechanics based inter-granular ductile fracture framework is developed.•A strain gradient crystal plasticity model is combined with a micromechanics based cohesive zone framework.•The traction separation relations are based on the evolution of micro-voids at the grain boundaries.•The framework successfully predicts the inter-granular cracking in micron sized specimens.</description><identifier>ISSN: 0749-6419</identifier><identifier>EISSN: 1879-2154</identifier><identifier>DOI: 10.1016/j.ijplas.2021.103123</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Boundary conditions ; Crack propagation ; Crystal plasticity ; Ductile fracture ; Evolution ; Fracture toughness ; Grain boundaries ; Grain boundary ; Grain orientation ; Heat treating ; Heat treatment ; High strength alloys ; Intergranular fracture ; Plastic properties ; Polycrystals ; Precipitates ; Size effect ; Strain gradient plasticity</subject><ispartof>International journal of plasticity, 2021-12, Vol.147, p.103123, Article 103123</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e50647022ce68c192d51c02d4c84edd266da216c260bd48cf49a181ef01d19663</citedby><cites>FETCH-LOGICAL-c334t-e50647022ce68c192d51c02d4c84edd266da216c260bd48cf49a181ef01d19663</cites><orcidid>0000-0002-7982-1105 ; 0000-0003-0081-4832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijplas.2021.103123$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Yalçinkaya, T.</creatorcontrib><creatorcontrib>Tandoğan, İ.T.</creatorcontrib><creatorcontrib>Özdemir, İ.</creatorcontrib><title>Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity</title><title>International journal of plasticity</title><description>The precipitation hardened, high strength aerospace alloys (e.g. Al 7000 alloy series) suffer from loss of fracture toughness due to the heat treatment leading to intergranular ductile fracture. Depending on the quenching and aging processes, large precipitates at the grain boundaries with wide precipitate free zones might develop. Therefore the grain boundaries constitute a potential location for micro void formation and evolution under the effect of external loads. This is a common problem of such materials where there is considerable ductile intergranular fracture, which is normally attributed to the embrittlement effects of the environment in other type of alloys. In this context, for the modeling of such a degradation process, the current paper develops a physics based intergranular cracking model of polycrystalline materials where a strain gradient crystal plasticity model is combined with cohesive zone elements whose traction separation relation is based on the evolution of micro-voids at the grain boundaries. The framework successfully predicts the intergranular crack formation and propagation, taking into account different microstructural features, such as porosity, pore shape, grain orientation distribution, and grain boundary conditions.
•A micromechanics based inter-granular ductile fracture framework is developed.•A strain gradient crystal plasticity model is combined with a micromechanics based cohesive zone framework.•The traction separation relations are based on the evolution of micro-voids at the grain boundaries.•The framework successfully predicts the inter-granular cracking in micron sized specimens.</description><subject>Boundary conditions</subject><subject>Crack propagation</subject><subject>Crystal plasticity</subject><subject>Ductile fracture</subject><subject>Evolution</subject><subject>Fracture toughness</subject><subject>Grain boundaries</subject><subject>Grain boundary</subject><subject>Grain orientation</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>High strength alloys</subject><subject>Intergranular fracture</subject><subject>Plastic properties</subject><subject>Polycrystals</subject><subject>Precipitates</subject><subject>Size effect</subject><subject>Strain gradient plasticity</subject><issn>0749-6419</issn><issn>1879-2154</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLg-vEPPAQ8d81L07S9CLL4BQte1GvIJq9rSm3XJFX6702pZ08D783MezOEXAFbAwN5065de-h0WHPGIY1y4PkRWUFV1hmHQhyTFStFnUkB9Sk5C6FljBVVDiui3gdn6d4PP_GD7nRAS10f0Wd7r_ux057a0UTXIW28NnH0mPY0RK8TJI512Ed6GLrJ-ClE3XWuRzo_E51xcbogJ43uAl7-4Tl5e7h_3Txl25fH583dNjN5LmKGBZOiZJwblJWBmtsCDONWmEqgtVxKqzlIwyXbWVGZRtQaKsCGgYVayvycXC--Bz98jRiiaofR9-mkSpqyBMHEzBILy_ghBI-NOnj3qf2kgKm5StWqpUo1V6mWKpPsdpFhSvDt0KtgUm6D1nk0UdnB_W_wC6Myf7g</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Yalçinkaya, T.</creator><creator>Tandoğan, İ.T.</creator><creator>Özdemir, İ.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-7982-1105</orcidid><orcidid>https://orcid.org/0000-0003-0081-4832</orcidid></search><sort><creationdate>202112</creationdate><title>Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity</title><author>Yalçinkaya, T. ; Tandoğan, İ.T. ; Özdemir, İ.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e50647022ce68c192d51c02d4c84edd266da216c260bd48cf49a181ef01d19663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boundary conditions</topic><topic>Crack propagation</topic><topic>Crystal plasticity</topic><topic>Ductile fracture</topic><topic>Evolution</topic><topic>Fracture toughness</topic><topic>Grain boundaries</topic><topic>Grain boundary</topic><topic>Grain orientation</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>High strength alloys</topic><topic>Intergranular fracture</topic><topic>Plastic properties</topic><topic>Polycrystals</topic><topic>Precipitates</topic><topic>Size effect</topic><topic>Strain gradient plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yalçinkaya, T.</creatorcontrib><creatorcontrib>Tandoğan, İ.T.</creatorcontrib><creatorcontrib>Özdemir, İ.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of plasticity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yalçinkaya, T.</au><au>Tandoğan, İ.T.</au><au>Özdemir, İ.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity</atitle><jtitle>International journal of plasticity</jtitle><date>2021-12</date><risdate>2021</risdate><volume>147</volume><spage>103123</spage><pages>103123-</pages><artnum>103123</artnum><issn>0749-6419</issn><eissn>1879-2154</eissn><abstract>The precipitation hardened, high strength aerospace alloys (e.g. Al 7000 alloy series) suffer from loss of fracture toughness due to the heat treatment leading to intergranular ductile fracture. Depending on the quenching and aging processes, large precipitates at the grain boundaries with wide precipitate free zones might develop. Therefore the grain boundaries constitute a potential location for micro void formation and evolution under the effect of external loads. This is a common problem of such materials where there is considerable ductile intergranular fracture, which is normally attributed to the embrittlement effects of the environment in other type of alloys. In this context, for the modeling of such a degradation process, the current paper develops a physics based intergranular cracking model of polycrystalline materials where a strain gradient crystal plasticity model is combined with cohesive zone elements whose traction separation relation is based on the evolution of micro-voids at the grain boundaries. The framework successfully predicts the intergranular crack formation and propagation, taking into account different microstructural features, such as porosity, pore shape, grain orientation distribution, and grain boundary conditions.
•A micromechanics based inter-granular ductile fracture framework is developed.•A strain gradient crystal plasticity model is combined with a micromechanics based cohesive zone framework.•The traction separation relations are based on the evolution of micro-voids at the grain boundaries.•The framework successfully predicts the inter-granular cracking in micron sized specimens.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijplas.2021.103123</doi><orcidid>https://orcid.org/0000-0002-7982-1105</orcidid><orcidid>https://orcid.org/0000-0003-0081-4832</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-6419 |
ispartof | International journal of plasticity, 2021-12, Vol.147, p.103123, Article 103123 |
issn | 0749-6419 1879-2154 |
language | eng |
recordid | cdi_proquest_journals_2607714046 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Boundary conditions Crack propagation Crystal plasticity Ductile fracture Evolution Fracture toughness Grain boundaries Grain boundary Grain orientation Heat treating Heat treatment High strength alloys Intergranular fracture Plastic properties Polycrystals Precipitates Size effect Strain gradient plasticity |
title | Void growth based inter-granular ductile fracture in strain gradient polycrystalline plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A22%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Void%20growth%20based%20inter-granular%20ductile%20fracture%20in%20strain%20gradient%20polycrystalline%20plasticity&rft.jtitle=International%20journal%20of%20plasticity&rft.au=Yal%C3%A7inkaya,%20T.&rft.date=2021-12&rft.volume=147&rft.spage=103123&rft.pages=103123-&rft.artnum=103123&rft.issn=0749-6419&rft.eissn=1879-2154&rft_id=info:doi/10.1016/j.ijplas.2021.103123&rft_dat=%3Cproquest_cross%3E2607714046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607714046&rft_id=info:pmid/&rft_els_id=S0749641921001911&rfr_iscdi=true |