Standard monomial theory and toric degenerations of Richardson varieties in the Grassmannian
Richardson varieties are obtained as intersections of Schubert and opposite Schubert varieties. We provide a new family of toric degenerations of Richardson varieties inside Grassmannians by studying Gröbner degenerations of their corresponding ideals. These degenerations are parametrised by block d...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2021-12, Vol.54 (4), p.1159-1183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1183 |
---|---|
container_issue | 4 |
container_start_page | 1159 |
container_title | Journal of algebraic combinatorics |
container_volume | 54 |
creator | Bonala, Narasimha Chary Clarke, Oliver Mohammadi, Fatemeh |
description | Richardson varieties are obtained as intersections of Schubert and opposite Schubert varieties. We provide a new family of toric degenerations of Richardson varieties inside Grassmannians by studying Gröbner degenerations of their corresponding ideals. These degenerations are parametrised by block diagonal matching fields in the sense of Sturmfels [
33
]. We associate a weight vector to each block diagonal matching field and study its corresponding initial ideal. In particular, we characterise when such ideals are toric, hence providing a family of toric degenerations for Richardson varieties. Given a Richardson variety
X
w
v
and a weight vector
w
ℓ
arising from a matching field, we consider two ideals: an ideal
G
k
,
n
,
ℓ
|
w
v
obtained by restricting the initial of the Plücker ideal to a smaller polynomial ring, and a toric ideal defined as the kernel of a monomial map
ϕ
ℓ
|
w
v
. We first characterise the monomial-free ideals of form
G
k
,
n
,
ℓ
|
w
v
. Then we construct a family of tableaux in bijection with semi–standard Young tableaux which leads to a monomial basis for the corresponding quotient ring. Finally, we prove that when
G
k
,
n
,
ℓ
|
w
v
is monomial-free and the initial ideal in
w
ℓ
(
I
(
X
w
v
)
)
is quadratically generated, then all three ideals in
w
ℓ
(
I
(
X
w
v
)
)
,
G
k
,
n
,
ℓ
|
w
v
and ker
(
ϕ
ℓ
|
w
v
)
coincide, and provide a toric degeneration of
X
w
v
. |
doi_str_mv | 10.1007/s10801-021-01042-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607643494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607643494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-e663ca8a28751da82f940bf0ae6cf8b55385902066e1cbe2f2bd7acbad15fb5d3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-oku9lNjlK0CoLgx00I2WzSpnSTmmwt_femruDNwzAwvM878CB0SeCaADQ3iQAHUgDNQ6Cixe4ITQhraCGIoMdoAoKyQnAhTtFZSisAEJywCfp4HZTvVOxwH3zonVrjYWlC3ON8xkOITuPOLIw3UQ0u-ISDxS9OLzOSgsdfKjozOJOw8wcSz6NKqVfeO-XP0YlV62QufvcUvd_fvc0eiqfn-ePs9qnQFRVDYeq61IoryhtGOsWpFRW0FpSpteUtYyVnAijUtSG6NdTStmuUblVHmG1ZV07R1di7ieFza9IgV2EbfX4paQ1NXZWVqHKKjikdQ0rRWLmJrldxLwnIg0U5WpTZovyxKHcZKkco5bBfmPhX_Q_1DR84d3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607643494</pqid></control><display><type>article</type><title>Standard monomial theory and toric degenerations of Richardson varieties in the Grassmannian</title><source>SpringerLink Journals</source><creator>Bonala, Narasimha Chary ; Clarke, Oliver ; Mohammadi, Fatemeh</creator><creatorcontrib>Bonala, Narasimha Chary ; Clarke, Oliver ; Mohammadi, Fatemeh</creatorcontrib><description>Richardson varieties are obtained as intersections of Schubert and opposite Schubert varieties. We provide a new family of toric degenerations of Richardson varieties inside Grassmannians by studying Gröbner degenerations of their corresponding ideals. These degenerations are parametrised by block diagonal matching fields in the sense of Sturmfels [
33
]. We associate a weight vector to each block diagonal matching field and study its corresponding initial ideal. In particular, we characterise when such ideals are toric, hence providing a family of toric degenerations for Richardson varieties. Given a Richardson variety
X
w
v
and a weight vector
w
ℓ
arising from a matching field, we consider two ideals: an ideal
G
k
,
n
,
ℓ
|
w
v
obtained by restricting the initial of the Plücker ideal to a smaller polynomial ring, and a toric ideal defined as the kernel of a monomial map
ϕ
ℓ
|
w
v
. We first characterise the monomial-free ideals of form
G
k
,
n
,
ℓ
|
w
v
. Then we construct a family of tableaux in bijection with semi–standard Young tableaux which leads to a monomial basis for the corresponding quotient ring. Finally, we prove that when
G
k
,
n
,
ℓ
|
w
v
is monomial-free and the initial ideal in
w
ℓ
(
I
(
X
w
v
)
)
is quadratically generated, then all three ideals in
w
ℓ
(
I
(
X
w
v
)
)
,
G
k
,
n
,
ℓ
|
w
v
and ker
(
ϕ
ℓ
|
w
v
)
coincide, and provide a toric degeneration of
X
w
v
.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-021-01042-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Degeneration ; Group Theory and Generalizations ; Lattices ; Matching ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures ; Polynomials ; Quotients ; Rings (mathematics)</subject><ispartof>Journal of algebraic combinatorics, 2021-12, Vol.54 (4), p.1159-1183</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-e663ca8a28751da82f940bf0ae6cf8b55385902066e1cbe2f2bd7acbad15fb5d3</citedby><cites>FETCH-LOGICAL-c429t-e663ca8a28751da82f940bf0ae6cf8b55385902066e1cbe2f2bd7acbad15fb5d3</cites><orcidid>0000-0001-5187-0995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-021-01042-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-021-01042-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bonala, Narasimha Chary</creatorcontrib><creatorcontrib>Clarke, Oliver</creatorcontrib><creatorcontrib>Mohammadi, Fatemeh</creatorcontrib><title>Standard monomial theory and toric degenerations of Richardson varieties in the Grassmannian</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>Richardson varieties are obtained as intersections of Schubert and opposite Schubert varieties. We provide a new family of toric degenerations of Richardson varieties inside Grassmannians by studying Gröbner degenerations of their corresponding ideals. These degenerations are parametrised by block diagonal matching fields in the sense of Sturmfels [
33
]. We associate a weight vector to each block diagonal matching field and study its corresponding initial ideal. In particular, we characterise when such ideals are toric, hence providing a family of toric degenerations for Richardson varieties. Given a Richardson variety
X
w
v
and a weight vector
w
ℓ
arising from a matching field, we consider two ideals: an ideal
G
k
,
n
,
ℓ
|
w
v
obtained by restricting the initial of the Plücker ideal to a smaller polynomial ring, and a toric ideal defined as the kernel of a monomial map
ϕ
ℓ
|
w
v
. We first characterise the monomial-free ideals of form
G
k
,
n
,
ℓ
|
w
v
. Then we construct a family of tableaux in bijection with semi–standard Young tableaux which leads to a monomial basis for the corresponding quotient ring. Finally, we prove that when
G
k
,
n
,
ℓ
|
w
v
is monomial-free and the initial ideal in
w
ℓ
(
I
(
X
w
v
)
)
is quadratically generated, then all three ideals in
w
ℓ
(
I
(
X
w
v
)
)
,
G
k
,
n
,
ℓ
|
w
v
and ker
(
ϕ
ℓ
|
w
v
)
coincide, and provide a toric degeneration of
X
w
v
.</description><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Degeneration</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Matching</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><subject>Polynomials</subject><subject>Quotients</subject><subject>Rings (mathematics)</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-oku9lNjlK0CoLgx00I2WzSpnSTmmwt_femruDNwzAwvM878CB0SeCaADQ3iQAHUgDNQ6Cixe4ITQhraCGIoMdoAoKyQnAhTtFZSisAEJywCfp4HZTvVOxwH3zonVrjYWlC3ON8xkOITuPOLIw3UQ0u-ISDxS9OLzOSgsdfKjozOJOw8wcSz6NKqVfeO-XP0YlV62QufvcUvd_fvc0eiqfn-ePs9qnQFRVDYeq61IoryhtGOsWpFRW0FpSpteUtYyVnAijUtSG6NdTStmuUblVHmG1ZV07R1di7ieFza9IgV2EbfX4paQ1NXZWVqHKKjikdQ0rRWLmJrldxLwnIg0U5WpTZovyxKHcZKkco5bBfmPhX_Q_1DR84d3g</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bonala, Narasimha Chary</creator><creator>Clarke, Oliver</creator><creator>Mohammadi, Fatemeh</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5187-0995</orcidid></search><sort><creationdate>20211201</creationdate><title>Standard monomial theory and toric degenerations of Richardson varieties in the Grassmannian</title><author>Bonala, Narasimha Chary ; Clarke, Oliver ; Mohammadi, Fatemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-e663ca8a28751da82f940bf0ae6cf8b55385902066e1cbe2f2bd7acbad15fb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Degeneration</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Matching</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><topic>Polynomials</topic><topic>Quotients</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonala, Narasimha Chary</creatorcontrib><creatorcontrib>Clarke, Oliver</creatorcontrib><creatorcontrib>Mohammadi, Fatemeh</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonala, Narasimha Chary</au><au>Clarke, Oliver</au><au>Mohammadi, Fatemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standard monomial theory and toric degenerations of Richardson varieties in the Grassmannian</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>54</volume><issue>4</issue><spage>1159</spage><epage>1183</epage><pages>1159-1183</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>Richardson varieties are obtained as intersections of Schubert and opposite Schubert varieties. We provide a new family of toric degenerations of Richardson varieties inside Grassmannians by studying Gröbner degenerations of their corresponding ideals. These degenerations are parametrised by block diagonal matching fields in the sense of Sturmfels [
33
]. We associate a weight vector to each block diagonal matching field and study its corresponding initial ideal. In particular, we characterise when such ideals are toric, hence providing a family of toric degenerations for Richardson varieties. Given a Richardson variety
X
w
v
and a weight vector
w
ℓ
arising from a matching field, we consider two ideals: an ideal
G
k
,
n
,
ℓ
|
w
v
obtained by restricting the initial of the Plücker ideal to a smaller polynomial ring, and a toric ideal defined as the kernel of a monomial map
ϕ
ℓ
|
w
v
. We first characterise the monomial-free ideals of form
G
k
,
n
,
ℓ
|
w
v
. Then we construct a family of tableaux in bijection with semi–standard Young tableaux which leads to a monomial basis for the corresponding quotient ring. Finally, we prove that when
G
k
,
n
,
ℓ
|
w
v
is monomial-free and the initial ideal in
w
ℓ
(
I
(
X
w
v
)
)
is quadratically generated, then all three ideals in
w
ℓ
(
I
(
X
w
v
)
)
,
G
k
,
n
,
ℓ
|
w
v
and ker
(
ϕ
ℓ
|
w
v
)
coincide, and provide a toric degeneration of
X
w
v
.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-021-01042-w</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5187-0995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9899 |
ispartof | Journal of algebraic combinatorics, 2021-12, Vol.54 (4), p.1159-1183 |
issn | 0925-9899 1572-9192 |
language | eng |
recordid | cdi_proquest_journals_2607643494 |
source | SpringerLink Journals |
subjects | Combinatorics Computer Science Convex and Discrete Geometry Degeneration Group Theory and Generalizations Lattices Matching Mathematics Mathematics and Statistics Order Ordered Algebraic Structures Polynomials Quotients Rings (mathematics) |
title | Standard monomial theory and toric degenerations of Richardson varieties in the Grassmannian |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standard%20monomial%20theory%20and%20toric%20degenerations%20of%20Richardson%20varieties%20in%20the%20Grassmannian&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Bonala,%20Narasimha%20Chary&rft.date=2021-12-01&rft.volume=54&rft.issue=4&rft.spage=1159&rft.epage=1183&rft.pages=1159-1183&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-021-01042-w&rft_dat=%3Cproquest_cross%3E2607643494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607643494&rft_id=info:pmid/&rfr_iscdi=true |