Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Non‐Contact Heating Applications

The current work presents the fabrication of micrometer‐thick single‐side‐coated surface‐engineered polypropylene (PP) film for versatile flexible electronics applications. Herein, the authors report, for the first time, photopolymerized thin coating of graphene nanofibers (GNFs) and iron oxide nano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2021-12, Vol.8 (23), p.n/a
Hauptverfasser: Ganguly, Sayan, Kanovsky, Naftali, Das, Poushali, Gedanken, Aharon, Margel, Shlomo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Advanced materials interfaces
container_volume 8
creator Ganguly, Sayan
Kanovsky, Naftali
Das, Poushali
Gedanken, Aharon
Margel, Shlomo
description The current work presents the fabrication of micrometer‐thick single‐side‐coated surface‐engineered polypropylene (PP) film for versatile flexible electronics applications. Herein, the authors report, for the first time, photopolymerized thin coating of graphene nanofibers (GNFs) and iron oxide nanoparticles (IONPs) onto non‐polar plastic via surface chemistry. The fabrication is achieved by adopting three consecutive steps; initially corona treated PP films are treated with silane for thin layer silica coating. Then, the silylated PP films are brushed up by pyrrole/GNFs/IONPs mixture, followed by UV exposure. The coated films show surface conductivity in the range of ≈20 S cm−1 at room temperature. Moreover, ≈15 microns of the coated film is tested against electromagnetic waves in the X‐band region (8.2–12.4 GHz) and its shielding behavior (≈24 dB) is confirmed. To demonstrate its wide range of versatility, the coated films are tested against angular strain and oscillatory magnetic fields. The results confirm angle dependent strain sensitivity and induction heating obeying Néel relaxation. To the best of the authors’ knowledge, this is the first synergistic coating archived for mitigating radiation pollution, strain sensing, and non‐contact heating. The work describes photografting of graphene nanofiber/iron oxide hybrid onto polypropylene film. The hybrid coated film is flexible. The surface morphology contents intermingle nanofiber and spherical iron oxide nanoparticles. The coated film is applied for mitigating electromagnetic pollution, deformation sensing, and non‐contact heating.
doi_str_mv 10.1002/admi.202101255
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607610696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607610696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-cbd9d1d25dba6404cb67fbad5844dc24eed439f838095761f221ffbd9f744b43</originalsourceid><addsrcrecordid>eNqFkU1OwzAQhSMEEgi6ZW2JLW1tx0maZVWgVOKnot1Hjj2mRq4d7CAoK47AtbgGJ8FtEbBj5bHmve-N9JLkmOAewZj2uVzqHsWUYEKzbCc5oKTMu0Wa4d0_837SCeEBY0wIJXSQHiQf04VrXePMaglev4JE84W2aOR4q-09cgpN465Zee8M9MeeNwuwgG64dUrX4PsT7yy6fdESkLOtQzfORhr3aGp4aLVAynl0YeBF1wbQuQHRerfk9xbWyzsudUyKiNlCg5Ex8xTNWs_jDTOwYfPnVq6xn2_voxjBRYsuYXvesGmMFhtAOEr2FDcBOt_vYTK_OJ-PLrtXt-PJaHjVFSkpsq6oZSmJpJmsec4wE3VeqJrLbMCYFJQBSJaWapAOcJkVOVGUEqWiSRWM1Sw9TE622Ma7xycIbfXgnryNiRXNcTTgvMyjqrdVCe9C8KCqxusl96uK4GpdWLUurPopLBrKreFZG1j9o66GZ9eTX-8X87af5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607610696</pqid></control><display><type>article</type><title>Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Non‐Contact Heating Applications</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Ganguly, Sayan ; Kanovsky, Naftali ; Das, Poushali ; Gedanken, Aharon ; Margel, Shlomo</creator><creatorcontrib>Ganguly, Sayan ; Kanovsky, Naftali ; Das, Poushali ; Gedanken, Aharon ; Margel, Shlomo</creatorcontrib><description>The current work presents the fabrication of micrometer‐thick single‐side‐coated surface‐engineered polypropylene (PP) film for versatile flexible electronics applications. Herein, the authors report, for the first time, photopolymerized thin coating of graphene nanofibers (GNFs) and iron oxide nanoparticles (IONPs) onto non‐polar plastic via surface chemistry. The fabrication is achieved by adopting three consecutive steps; initially corona treated PP films are treated with silane for thin layer silica coating. Then, the silylated PP films are brushed up by pyrrole/GNFs/IONPs mixture, followed by UV exposure. The coated films show surface conductivity in the range of ≈20 S cm−1 at room temperature. Moreover, ≈15 microns of the coated film is tested against electromagnetic waves in the X‐band region (8.2–12.4 GHz) and its shielding behavior (≈24 dB) is confirmed. To demonstrate its wide range of versatility, the coated films are tested against angular strain and oscillatory magnetic fields. The results confirm angle dependent strain sensitivity and induction heating obeying Néel relaxation. To the best of the authors’ knowledge, this is the first synergistic coating archived for mitigating radiation pollution, strain sensing, and non‐contact heating. The work describes photografting of graphene nanofiber/iron oxide hybrid onto polypropylene film. The hybrid coated film is flexible. The surface morphology contents intermingle nanofiber and spherical iron oxide nanoparticles. The coated film is applied for mitigating electromagnetic pollution, deformation sensing, and non‐contact heating.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202101255</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Coating ; corona‐treated polypropylene films, electromagnetic radiation shielding ; Electromagnetic induction ; Electromagnetic radiation ; Electromagnetic shielding ; Flexible components ; Graphene ; Induction heating ; Iron oxides ; Magnetic shielding ; magneto‐electro coating ; Nanofibers ; Nanoparticles ; oscillatory magnetic field ; photopolymerization ; Polypyrroles ; Room temperature ; Silicon dioxide ; strain sensing ; surface conductivity</subject><ispartof>Advanced materials interfaces, 2021-12, Vol.8 (23), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-cbd9d1d25dba6404cb67fbad5844dc24eed439f838095761f221ffbd9f744b43</citedby><cites>FETCH-LOGICAL-c3175-cbd9d1d25dba6404cb67fbad5844dc24eed439f838095761f221ffbd9f744b43</cites><orcidid>0000-0001-6524-8179 ; 0000-0001-7846-6677 ; 0000-0002-0353-4396 ; 0000-0002-1243-2957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202101255$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202101255$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ganguly, Sayan</creatorcontrib><creatorcontrib>Kanovsky, Naftali</creatorcontrib><creatorcontrib>Das, Poushali</creatorcontrib><creatorcontrib>Gedanken, Aharon</creatorcontrib><creatorcontrib>Margel, Shlomo</creatorcontrib><title>Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Non‐Contact Heating Applications</title><title>Advanced materials interfaces</title><description>The current work presents the fabrication of micrometer‐thick single‐side‐coated surface‐engineered polypropylene (PP) film for versatile flexible electronics applications. Herein, the authors report, for the first time, photopolymerized thin coating of graphene nanofibers (GNFs) and iron oxide nanoparticles (IONPs) onto non‐polar plastic via surface chemistry. The fabrication is achieved by adopting three consecutive steps; initially corona treated PP films are treated with silane for thin layer silica coating. Then, the silylated PP films are brushed up by pyrrole/GNFs/IONPs mixture, followed by UV exposure. The coated films show surface conductivity in the range of ≈20 S cm−1 at room temperature. Moreover, ≈15 microns of the coated film is tested against electromagnetic waves in the X‐band region (8.2–12.4 GHz) and its shielding behavior (≈24 dB) is confirmed. To demonstrate its wide range of versatility, the coated films are tested against angular strain and oscillatory magnetic fields. The results confirm angle dependent strain sensitivity and induction heating obeying Néel relaxation. To the best of the authors’ knowledge, this is the first synergistic coating archived for mitigating radiation pollution, strain sensing, and non‐contact heating. The work describes photografting of graphene nanofiber/iron oxide hybrid onto polypropylene film. The hybrid coated film is flexible. The surface morphology contents intermingle nanofiber and spherical iron oxide nanoparticles. The coated film is applied for mitigating electromagnetic pollution, deformation sensing, and non‐contact heating.</description><subject>Coating</subject><subject>corona‐treated polypropylene films, electromagnetic radiation shielding</subject><subject>Electromagnetic induction</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic shielding</subject><subject>Flexible components</subject><subject>Graphene</subject><subject>Induction heating</subject><subject>Iron oxides</subject><subject>Magnetic shielding</subject><subject>magneto‐electro coating</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>oscillatory magnetic field</subject><subject>photopolymerization</subject><subject>Polypyrroles</subject><subject>Room temperature</subject><subject>Silicon dioxide</subject><subject>strain sensing</subject><subject>surface conductivity</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkU1OwzAQhSMEEgi6ZW2JLW1tx0maZVWgVOKnot1Hjj2mRq4d7CAoK47AtbgGJ8FtEbBj5bHmve-N9JLkmOAewZj2uVzqHsWUYEKzbCc5oKTMu0Wa4d0_837SCeEBY0wIJXSQHiQf04VrXePMaglev4JE84W2aOR4q-09cgpN465Zee8M9MeeNwuwgG64dUrX4PsT7yy6fdESkLOtQzfORhr3aGp4aLVAynl0YeBF1wbQuQHRerfk9xbWyzsudUyKiNlCg5Ex8xTNWs_jDTOwYfPnVq6xn2_voxjBRYsuYXvesGmMFhtAOEr2FDcBOt_vYTK_OJ-PLrtXt-PJaHjVFSkpsq6oZSmJpJmsec4wE3VeqJrLbMCYFJQBSJaWapAOcJkVOVGUEqWiSRWM1Sw9TE622Ma7xycIbfXgnryNiRXNcTTgvMyjqrdVCe9C8KCqxusl96uK4GpdWLUurPopLBrKreFZG1j9o66GZ9eTX-8X87af5Q</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Ganguly, Sayan</creator><creator>Kanovsky, Naftali</creator><creator>Das, Poushali</creator><creator>Gedanken, Aharon</creator><creator>Margel, Shlomo</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6524-8179</orcidid><orcidid>https://orcid.org/0000-0001-7846-6677</orcidid><orcidid>https://orcid.org/0000-0002-0353-4396</orcidid><orcidid>https://orcid.org/0000-0002-1243-2957</orcidid></search><sort><creationdate>20211201</creationdate><title>Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Non‐Contact Heating Applications</title><author>Ganguly, Sayan ; Kanovsky, Naftali ; Das, Poushali ; Gedanken, Aharon ; Margel, Shlomo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-cbd9d1d25dba6404cb67fbad5844dc24eed439f838095761f221ffbd9f744b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coating</topic><topic>corona‐treated polypropylene films, electromagnetic radiation shielding</topic><topic>Electromagnetic induction</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic shielding</topic><topic>Flexible components</topic><topic>Graphene</topic><topic>Induction heating</topic><topic>Iron oxides</topic><topic>Magnetic shielding</topic><topic>magneto‐electro coating</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>oscillatory magnetic field</topic><topic>photopolymerization</topic><topic>Polypyrroles</topic><topic>Room temperature</topic><topic>Silicon dioxide</topic><topic>strain sensing</topic><topic>surface conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganguly, Sayan</creatorcontrib><creatorcontrib>Kanovsky, Naftali</creatorcontrib><creatorcontrib>Das, Poushali</creatorcontrib><creatorcontrib>Gedanken, Aharon</creatorcontrib><creatorcontrib>Margel, Shlomo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganguly, Sayan</au><au>Kanovsky, Naftali</au><au>Das, Poushali</au><au>Gedanken, Aharon</au><au>Margel, Shlomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Non‐Contact Heating Applications</atitle><jtitle>Advanced materials interfaces</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>8</volume><issue>23</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>The current work presents the fabrication of micrometer‐thick single‐side‐coated surface‐engineered polypropylene (PP) film for versatile flexible electronics applications. Herein, the authors report, for the first time, photopolymerized thin coating of graphene nanofibers (GNFs) and iron oxide nanoparticles (IONPs) onto non‐polar plastic via surface chemistry. The fabrication is achieved by adopting three consecutive steps; initially corona treated PP films are treated with silane for thin layer silica coating. Then, the silylated PP films are brushed up by pyrrole/GNFs/IONPs mixture, followed by UV exposure. The coated films show surface conductivity in the range of ≈20 S cm−1 at room temperature. Moreover, ≈15 microns of the coated film is tested against electromagnetic waves in the X‐band region (8.2–12.4 GHz) and its shielding behavior (≈24 dB) is confirmed. To demonstrate its wide range of versatility, the coated films are tested against angular strain and oscillatory magnetic fields. The results confirm angle dependent strain sensitivity and induction heating obeying Néel relaxation. To the best of the authors’ knowledge, this is the first synergistic coating archived for mitigating radiation pollution, strain sensing, and non‐contact heating. The work describes photografting of graphene nanofiber/iron oxide hybrid onto polypropylene film. The hybrid coated film is flexible. The surface morphology contents intermingle nanofiber and spherical iron oxide nanoparticles. The coated film is applied for mitigating electromagnetic pollution, deformation sensing, and non‐contact heating.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.202101255</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6524-8179</orcidid><orcidid>https://orcid.org/0000-0001-7846-6677</orcidid><orcidid>https://orcid.org/0000-0002-0353-4396</orcidid><orcidid>https://orcid.org/0000-0002-1243-2957</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2021-12, Vol.8 (23), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2607610696
source Wiley Online Library - AutoHoldings Journals
subjects Coating
corona‐treated polypropylene films, electromagnetic radiation shielding
Electromagnetic induction
Electromagnetic radiation
Electromagnetic shielding
Flexible components
Graphene
Induction heating
Iron oxides
Magnetic shielding
magneto‐electro coating
Nanofibers
Nanoparticles
oscillatory magnetic field
photopolymerization
Polypyrroles
Room temperature
Silicon dioxide
strain sensing
surface conductivity
title Photopolymerized Thin Coating of Polypyrrole/Graphene Nanofiber/Iron Oxide onto Nonpolar Plastic for Flexible Electromagnetic Radiation Shielding, Strain Sensing, and Non‐Contact Heating Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photopolymerized%20Thin%20Coating%20of%20Polypyrrole/Graphene%20Nanofiber/Iron%20Oxide%20onto%20Nonpolar%20Plastic%20for%20Flexible%20Electromagnetic%20Radiation%20Shielding,%20Strain%20Sensing,%20and%20Non%E2%80%90Contact%20Heating%20Applications&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Ganguly,%20Sayan&rft.date=2021-12-01&rft.volume=8&rft.issue=23&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202101255&rft_dat=%3Cproquest_cross%3E2607610696%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607610696&rft_id=info:pmid/&rfr_iscdi=true