Structural change induced by electrochemical sodium extraction from layered O′3-NaMnO2
Sodium-ion batteries can be designed as a low-cost alternative to lithium-ion batteries, where various layered transition metal oxides are frontrunner positive electrode materials. Owing to the inexpensive and abundant Mn resources and a large reversible capacity approaching 200 mA h g−1, α type (O′...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-01, Vol.9 (47), p.26810-26819 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26819 |
---|---|
container_issue | 47 |
container_start_page | 26810 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 9 |
creator | Kubota, Kei Miyazaki, Masahiro Eun Jeong Kim Yoshida, Hiroaki Barpanda, Prabeer Komaba, Shinichi |
description | Sodium-ion batteries can be designed as a low-cost alternative to lithium-ion batteries, where various layered transition metal oxides are frontrunner positive electrode materials. Owing to the inexpensive and abundant Mn resources and a large reversible capacity approaching 200 mA h g−1, α type (O′3 type) NaMnO2 is considered as a competent and economical candidate for sodium-ion batteries. However, O′3 NaMnO2 suffers from rapid capacity fading during charge–discharge cycling, for which the reasons remain elusive. The current work probes the underlying mechanisms behind this capacity degradation based on the correlation between the crystal structure and electrochemical properties. O′3 type NaMnO2, having a monoclinic O3-type structure, undergoes (de)intercalation of sodium ions through numerous potential plateaus and jumps corresponding to a number of intermediate phases. In situ and ex situ X-ray diffraction analyses reveal that the structure changes with different degrees of (de)sodiation and that eight different crystalline phases (co)exist. Furthermore, we have optimized the appropriate voltage window to achieve excellent cycling stability. |
doi_str_mv | 10.1039/d1ta05390f |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2607486272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607486272</sourcerecordid><originalsourceid>FETCH-LOGICAL-j285t-4a5ef1f8bb05c1792f6451a7218bbd77e87b0d1ca261f6f3115fd77fdcf7074f3</originalsourceid><addsrcrecordid>eNo9TctKxDAADKLgsu7FLwh4rubRvI6y-ILVHlTwtqR5uC1to2kC7s1v8pP8EgOKc5lhmAcApxidY0TVhcVJI0YV8gdgQRBDlagVP_zXUh6D1Tz3qEAixJVagJfHFLNJOeoBmp2eXh3sJpuNs7DdQzc4k2IwOzd2piTmYLs8QveRojapCxP0MYxw0HsXS6P5_vyi1YO-nxpyAo68Hma3-uMleL6-elrfVpvm5m59ual6Ilmqas2cx162LWIGC0U8rxnWguBiWSGcFC2y2GjCseeeYsx8sb01XiBRe7oEZ7-7bzG8ZzenbR9ynMrllvCSkJwIQn8Ae-5Vbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607486272</pqid></control><display><type>article</type><title>Structural change induced by electrochemical sodium extraction from layered O′3-NaMnO2</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kubota, Kei ; Miyazaki, Masahiro ; Eun Jeong Kim ; Yoshida, Hiroaki ; Barpanda, Prabeer ; Komaba, Shinichi</creator><creatorcontrib>Kubota, Kei ; Miyazaki, Masahiro ; Eun Jeong Kim ; Yoshida, Hiroaki ; Barpanda, Prabeer ; Komaba, Shinichi</creatorcontrib><description>Sodium-ion batteries can be designed as a low-cost alternative to lithium-ion batteries, where various layered transition metal oxides are frontrunner positive electrode materials. Owing to the inexpensive and abundant Mn resources and a large reversible capacity approaching 200 mA h g−1, α type (O′3 type) NaMnO2 is considered as a competent and economical candidate for sodium-ion batteries. However, O′3 NaMnO2 suffers from rapid capacity fading during charge–discharge cycling, for which the reasons remain elusive. The current work probes the underlying mechanisms behind this capacity degradation based on the correlation between the crystal structure and electrochemical properties. O′3 type NaMnO2, having a monoclinic O3-type structure, undergoes (de)intercalation of sodium ions through numerous potential plateaus and jumps corresponding to a number of intermediate phases. In situ and ex situ X-ray diffraction analyses reveal that the structure changes with different degrees of (de)sodiation and that eight different crystalline phases (co)exist. Furthermore, we have optimized the appropriate voltage window to achieve excellent cycling stability.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta05390f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Crystal structure ; Cycles ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Lithium ; Lithium-ion batteries ; Plateaus ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; Transition metal oxides ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (47), p.26810-26819</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kubota, Kei</creatorcontrib><creatorcontrib>Miyazaki, Masahiro</creatorcontrib><creatorcontrib>Eun Jeong Kim</creatorcontrib><creatorcontrib>Yoshida, Hiroaki</creatorcontrib><creatorcontrib>Barpanda, Prabeer</creatorcontrib><creatorcontrib>Komaba, Shinichi</creatorcontrib><title>Structural change induced by electrochemical sodium extraction from layered O′3-NaMnO2</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Sodium-ion batteries can be designed as a low-cost alternative to lithium-ion batteries, where various layered transition metal oxides are frontrunner positive electrode materials. Owing to the inexpensive and abundant Mn resources and a large reversible capacity approaching 200 mA h g−1, α type (O′3 type) NaMnO2 is considered as a competent and economical candidate for sodium-ion batteries. However, O′3 NaMnO2 suffers from rapid capacity fading during charge–discharge cycling, for which the reasons remain elusive. The current work probes the underlying mechanisms behind this capacity degradation based on the correlation between the crystal structure and electrochemical properties. O′3 type NaMnO2, having a monoclinic O3-type structure, undergoes (de)intercalation of sodium ions through numerous potential plateaus and jumps corresponding to a number of intermediate phases. In situ and ex situ X-ray diffraction analyses reveal that the structure changes with different degrees of (de)sodiation and that eight different crystalline phases (co)exist. Furthermore, we have optimized the appropriate voltage window to achieve excellent cycling stability.</description><subject>Batteries</subject><subject>Crystal structure</subject><subject>Cycles</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Plateaus</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Transition metal oxides</subject><subject>X-ray diffraction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9TctKxDAADKLgsu7FLwh4rubRvI6y-ILVHlTwtqR5uC1to2kC7s1v8pP8EgOKc5lhmAcApxidY0TVhcVJI0YV8gdgQRBDlagVP_zXUh6D1Tz3qEAixJVagJfHFLNJOeoBmp2eXh3sJpuNs7DdQzc4k2IwOzd2piTmYLs8QveRojapCxP0MYxw0HsXS6P5_vyi1YO-nxpyAo68Hma3-uMleL6-elrfVpvm5m59ual6Ilmqas2cx162LWIGC0U8rxnWguBiWSGcFC2y2GjCseeeYsx8sb01XiBRe7oEZ7-7bzG8ZzenbR9ynMrllvCSkJwIQn8Ae-5Vbw</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Kubota, Kei</creator><creator>Miyazaki, Masahiro</creator><creator>Eun Jeong Kim</creator><creator>Yoshida, Hiroaki</creator><creator>Barpanda, Prabeer</creator><creator>Komaba, Shinichi</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20210101</creationdate><title>Structural change induced by electrochemical sodium extraction from layered O′3-NaMnO2</title><author>Kubota, Kei ; Miyazaki, Masahiro ; Eun Jeong Kim ; Yoshida, Hiroaki ; Barpanda, Prabeer ; Komaba, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j285t-4a5ef1f8bb05c1792f6451a7218bbd77e87b0d1ca261f6f3115fd77fdcf7074f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Batteries</topic><topic>Crystal structure</topic><topic>Cycles</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Plateaus</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Transition metal oxides</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubota, Kei</creatorcontrib><creatorcontrib>Miyazaki, Masahiro</creatorcontrib><creatorcontrib>Eun Jeong Kim</creatorcontrib><creatorcontrib>Yoshida, Hiroaki</creatorcontrib><creatorcontrib>Barpanda, Prabeer</creatorcontrib><creatorcontrib>Komaba, Shinichi</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubota, Kei</au><au>Miyazaki, Masahiro</au><au>Eun Jeong Kim</au><au>Yoshida, Hiroaki</au><au>Barpanda, Prabeer</au><au>Komaba, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural change induced by electrochemical sodium extraction from layered O′3-NaMnO2</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>9</volume><issue>47</issue><spage>26810</spage><epage>26819</epage><pages>26810-26819</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Sodium-ion batteries can be designed as a low-cost alternative to lithium-ion batteries, where various layered transition metal oxides are frontrunner positive electrode materials. Owing to the inexpensive and abundant Mn resources and a large reversible capacity approaching 200 mA h g−1, α type (O′3 type) NaMnO2 is considered as a competent and economical candidate for sodium-ion batteries. However, O′3 NaMnO2 suffers from rapid capacity fading during charge–discharge cycling, for which the reasons remain elusive. The current work probes the underlying mechanisms behind this capacity degradation based on the correlation between the crystal structure and electrochemical properties. O′3 type NaMnO2, having a monoclinic O3-type structure, undergoes (de)intercalation of sodium ions through numerous potential plateaus and jumps corresponding to a number of intermediate phases. In situ and ex situ X-ray diffraction analyses reveal that the structure changes with different degrees of (de)sodiation and that eight different crystalline phases (co)exist. Furthermore, we have optimized the appropriate voltage window to achieve excellent cycling stability.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta05390f</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2021-01, Vol.9 (47), p.26810-26819 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2607486272 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Batteries Crystal structure Cycles Electrochemical analysis Electrochemistry Electrode materials Lithium Lithium-ion batteries Plateaus Rechargeable batteries Sodium Sodium-ion batteries Transition metal oxides X-ray diffraction |
title | Structural change induced by electrochemical sodium extraction from layered O′3-NaMnO2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20change%20induced%20by%20electrochemical%20sodium%20extraction%20from%20layered%20O%E2%80%B23-NaMnO2&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kubota,%20Kei&rft.date=2021-01-01&rft.volume=9&rft.issue=47&rft.spage=26810&rft.epage=26819&rft.pages=26810-26819&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta05390f&rft_dat=%3Cproquest%3E2607486272%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607486272&rft_id=info:pmid/&rfr_iscdi=true |