How to Build Robust FAQ Chatbot with Controllable Question Generator?

Many unanswerable adversarial questions fool the question-answer (QA) system with some plausible answers. Building a robust, frequently asked questions (FAQ) chatbot needs a large amount of diverse adversarial examples. Recent question generation methods are ineffective at generating many high-quali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Pan, Yan, Ma, Mingyang, Pflugfelder, Bernhard, Groh, Georg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Pan, Yan
Ma, Mingyang
Pflugfelder, Bernhard
Groh, Georg
description Many unanswerable adversarial questions fool the question-answer (QA) system with some plausible answers. Building a robust, frequently asked questions (FAQ) chatbot needs a large amount of diverse adversarial examples. Recent question generation methods are ineffective at generating many high-quality and diverse adversarial question-answer pairs from unstructured text. We propose the diversity controllable semantically valid adversarial attacker (DCSA), a high-quality, diverse, controllable method to generate standard and adversarial samples with a semantic graph. The fluent and semantically generated QA pairs fool our passage retrieval model successfully. After that, we conduct a study on the robustness and generalization of the QA model with generated QA pairs among different domains. We find that the generated data set improves the generalizability of the QA model to the new target domain and the robustness of the QA model to detect unanswerable adversarial questions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2607475272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607475272</sourcerecordid><originalsourceid>FETCH-proquest_journals_26074752723</originalsourceid><addsrcrecordid>eNqNytEKgjAUgOERBEn5Dge6Ftamrrso0bwtupdJC5WxU9sZvn4FPUBX_8X_LVgipNxl-1yIFUtDmDjnolSiKGTC6hZnIIRTHO0drtjHQNAcL1ANmnokmEcaoEJHHq3VvTVwiSbQiA7OxhmvCf1hw5YPbYNJf12zbVPfqjZ7enx9eTdh9O6zOlFylatCKCH_U28NUjo2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607475272</pqid></control><display><type>article</type><title>How to Build Robust FAQ Chatbot with Controllable Question Generator?</title><source>Free E- Journals</source><creator>Pan, Yan ; Ma, Mingyang ; Pflugfelder, Bernhard ; Groh, Georg</creator><creatorcontrib>Pan, Yan ; Ma, Mingyang ; Pflugfelder, Bernhard ; Groh, Georg</creatorcontrib><description>Many unanswerable adversarial questions fool the question-answer (QA) system with some plausible answers. Building a robust, frequently asked questions (FAQ) chatbot needs a large amount of diverse adversarial examples. Recent question generation methods are ineffective at generating many high-quality and diverse adversarial question-answer pairs from unstructured text. We propose the diversity controllable semantically valid adversarial attacker (DCSA), a high-quality, diverse, controllable method to generate standard and adversarial samples with a semantic graph. The fluent and semantically generated QA pairs fool our passage retrieval model successfully. After that, we conduct a study on the robustness and generalization of the QA model with generated QA pairs among different domains. We find that the generated data set improves the generalizability of the QA model to the new target domain and the robustness of the QA model to detect unanswerable adversarial questions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chatbots ; Domains ; Quality assurance ; Questions ; Robust control ; Unstructured data</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Ma, Mingyang</creatorcontrib><creatorcontrib>Pflugfelder, Bernhard</creatorcontrib><creatorcontrib>Groh, Georg</creatorcontrib><title>How to Build Robust FAQ Chatbot with Controllable Question Generator?</title><title>arXiv.org</title><description>Many unanswerable adversarial questions fool the question-answer (QA) system with some plausible answers. Building a robust, frequently asked questions (FAQ) chatbot needs a large amount of diverse adversarial examples. Recent question generation methods are ineffective at generating many high-quality and diverse adversarial question-answer pairs from unstructured text. We propose the diversity controllable semantically valid adversarial attacker (DCSA), a high-quality, diverse, controllable method to generate standard and adversarial samples with a semantic graph. The fluent and semantically generated QA pairs fool our passage retrieval model successfully. After that, we conduct a study on the robustness and generalization of the QA model with generated QA pairs among different domains. We find that the generated data set improves the generalizability of the QA model to the new target domain and the robustness of the QA model to detect unanswerable adversarial questions.</description><subject>Chatbots</subject><subject>Domains</subject><subject>Quality assurance</subject><subject>Questions</subject><subject>Robust control</subject><subject>Unstructured data</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNytEKgjAUgOERBEn5Dge6Ftamrrso0bwtupdJC5WxU9sZvn4FPUBX_8X_LVgipNxl-1yIFUtDmDjnolSiKGTC6hZnIIRTHO0drtjHQNAcL1ANmnokmEcaoEJHHq3VvTVwiSbQiA7OxhmvCf1hw5YPbYNJf12zbVPfqjZ7enx9eTdh9O6zOlFylatCKCH_U28NUjo2</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Pan, Yan</creator><creator>Ma, Mingyang</creator><creator>Pflugfelder, Bernhard</creator><creator>Groh, Georg</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211118</creationdate><title>How to Build Robust FAQ Chatbot with Controllable Question Generator?</title><author>Pan, Yan ; Ma, Mingyang ; Pflugfelder, Bernhard ; Groh, Georg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26074752723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chatbots</topic><topic>Domains</topic><topic>Quality assurance</topic><topic>Questions</topic><topic>Robust control</topic><topic>Unstructured data</topic><toplevel>online_resources</toplevel><creatorcontrib>Pan, Yan</creatorcontrib><creatorcontrib>Ma, Mingyang</creatorcontrib><creatorcontrib>Pflugfelder, Bernhard</creatorcontrib><creatorcontrib>Groh, Georg</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Yan</au><au>Ma, Mingyang</au><au>Pflugfelder, Bernhard</au><au>Groh, Georg</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>How to Build Robust FAQ Chatbot with Controllable Question Generator?</atitle><jtitle>arXiv.org</jtitle><date>2021-11-18</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Many unanswerable adversarial questions fool the question-answer (QA) system with some plausible answers. Building a robust, frequently asked questions (FAQ) chatbot needs a large amount of diverse adversarial examples. Recent question generation methods are ineffective at generating many high-quality and diverse adversarial question-answer pairs from unstructured text. We propose the diversity controllable semantically valid adversarial attacker (DCSA), a high-quality, diverse, controllable method to generate standard and adversarial samples with a semantic graph. The fluent and semantically generated QA pairs fool our passage retrieval model successfully. After that, we conduct a study on the robustness and generalization of the QA model with generated QA pairs among different domains. We find that the generated data set improves the generalizability of the QA model to the new target domain and the robustness of the QA model to detect unanswerable adversarial questions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2607475272
source Free E- Journals
subjects Chatbots
Domains
Quality assurance
Questions
Robust control
Unstructured data
title How to Build Robust FAQ Chatbot with Controllable Question Generator?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A02%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=How%20to%20Build%20Robust%20FAQ%20Chatbot%20with%20Controllable%20Question%20Generator?&rft.jtitle=arXiv.org&rft.au=Pan,%20Yan&rft.date=2021-11-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2607475272%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607475272&rft_id=info:pmid/&rfr_iscdi=true