Cosmology in scalar-tensor \(f(R,T)\) gravity
In this work, we use reconstruction methods to obtain cosmological solutions in the recently developed scalar-tensor representation of \(f(R,T)\) gravity. Assuming that matter is described by an isotropic perfect fluid and the spacetime is homogeneous and isotropic, i.e., the Friedmann-Lemaître-Robs...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gonçalves, Tiago B Rosa, João Luís Lobo, Francisco S N |
description | In this work, we use reconstruction methods to obtain cosmological solutions in the recently developed scalar-tensor representation of \(f(R,T)\) gravity. Assuming that matter is described by an isotropic perfect fluid and the spacetime is homogeneous and isotropic, i.e., the Friedmann-Lemaître-Robsertson-Walker (FLRW) universe, the energy density, the pressure, and the scalar field associated with the arbitrary dependency of the action in \(T\) can be written generally as functions of the scale factor. We then select three particular forms of the scale factor: an exponential expansion with \({a(t)\propto e^t}\) (motivated by the de Sitter solution); and two types of power-law expansion with \({a(t)\propto t^{1/2}}\) and \({a(t)\propto t^{2/3}}\) (motivated by the behaviors of radiation- and matter-dominated universes in general relativity, respectively). A complete analysis for different curvature parameters \({k=\{-1,0,1\}}\) and equation of state parameters \({w=\{-1,0,1/3\}}\) is provided. Finally, the explicit forms of the functions \(f\left(R,T\right)\) associated with the scalar-field potentials of the representation used are deduced. |
doi_str_mv | 10.48550/arxiv.2112.02541 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2607473286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2607473286</sourcerecordid><originalsourceid>FETCH-proquest_journals_26074732863</originalsourceid><addsrcrecordid>eNqNykELgjAYgOGPIEjKH9Bt0EWh2fZtU-9SdA6PgoxQUczVppL_vg79gE7v4XkB9pxFMlWKnbR9t3OEnGPEUEm-Ag-F4DSViBvwnesYYxgnqJTwgGbGPUxvmoW0A3F33WtLx2pwxpIiqIPbMQ-LkDRWz-247GBd695V_q9bOFzOeXalT2teU-XGsjOTHb5UYswSmQhMY_Hf9QGsgDca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607473286</pqid></control><display><type>article</type><title>Cosmology in scalar-tensor \(f(R,T)\) gravity</title><source>Free E- Journals</source><creator>Gonçalves, Tiago B ; Rosa, João Luís ; Lobo, Francisco S N</creator><creatorcontrib>Gonçalves, Tiago B ; Rosa, João Luís ; Lobo, Francisco S N</creatorcontrib><description>In this work, we use reconstruction methods to obtain cosmological solutions in the recently developed scalar-tensor representation of \(f(R,T)\) gravity. Assuming that matter is described by an isotropic perfect fluid and the spacetime is homogeneous and isotropic, i.e., the Friedmann-Lemaître-Robsertson-Walker (FLRW) universe, the energy density, the pressure, and the scalar field associated with the arbitrary dependency of the action in \(T\) can be written generally as functions of the scale factor. We then select three particular forms of the scale factor: an exponential expansion with \({a(t)\propto e^t}\) (motivated by the de Sitter solution); and two types of power-law expansion with \({a(t)\propto t^{1/2}}\) and \({a(t)\propto t^{2/3}}\) (motivated by the behaviors of radiation- and matter-dominated universes in general relativity, respectively). A complete analysis for different curvature parameters \({k=\{-1,0,1\}}\) and equation of state parameters \({w=\{-1,0,1/3\}}\) is provided. Finally, the explicit forms of the functions \(f\left(R,T\right)\) associated with the scalar-field potentials of the representation used are deduced.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2112.02541</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cosmology ; Equations of state ; Flux density ; Mathematical analysis ; Parameters ; Relativity ; Representations ; Scalars ; Tensors</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Gonçalves, Tiago B</creatorcontrib><creatorcontrib>Rosa, João Luís</creatorcontrib><creatorcontrib>Lobo, Francisco S N</creatorcontrib><title>Cosmology in scalar-tensor \(f(R,T)\) gravity</title><title>arXiv.org</title><description>In this work, we use reconstruction methods to obtain cosmological solutions in the recently developed scalar-tensor representation of \(f(R,T)\) gravity. Assuming that matter is described by an isotropic perfect fluid and the spacetime is homogeneous and isotropic, i.e., the Friedmann-Lemaître-Robsertson-Walker (FLRW) universe, the energy density, the pressure, and the scalar field associated with the arbitrary dependency of the action in \(T\) can be written generally as functions of the scale factor. We then select three particular forms of the scale factor: an exponential expansion with \({a(t)\propto e^t}\) (motivated by the de Sitter solution); and two types of power-law expansion with \({a(t)\propto t^{1/2}}\) and \({a(t)\propto t^{2/3}}\) (motivated by the behaviors of radiation- and matter-dominated universes in general relativity, respectively). A complete analysis for different curvature parameters \({k=\{-1,0,1\}}\) and equation of state parameters \({w=\{-1,0,1/3\}}\) is provided. Finally, the explicit forms of the functions \(f\left(R,T\right)\) associated with the scalar-field potentials of the representation used are deduced.</description><subject>Cosmology</subject><subject>Equations of state</subject><subject>Flux density</subject><subject>Mathematical analysis</subject><subject>Parameters</subject><subject>Relativity</subject><subject>Representations</subject><subject>Scalars</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykELgjAYgOGPIEjKH9Bt0EWh2fZtU-9SdA6PgoxQUczVppL_vg79gE7v4XkB9pxFMlWKnbR9t3OEnGPEUEm-Ag-F4DSViBvwnesYYxgnqJTwgGbGPUxvmoW0A3F33WtLx2pwxpIiqIPbMQ-LkDRWz-247GBd695V_q9bOFzOeXalT2teU-XGsjOTHb5UYswSmQhMY_Hf9QGsgDca</recordid><startdate>20220311</startdate><enddate>20220311</enddate><creator>Gonçalves, Tiago B</creator><creator>Rosa, João Luís</creator><creator>Lobo, Francisco S N</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220311</creationdate><title>Cosmology in scalar-tensor \(f(R,T)\) gravity</title><author>Gonçalves, Tiago B ; Rosa, João Luís ; Lobo, Francisco S N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26074732863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cosmology</topic><topic>Equations of state</topic><topic>Flux density</topic><topic>Mathematical analysis</topic><topic>Parameters</topic><topic>Relativity</topic><topic>Representations</topic><topic>Scalars</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Tiago B</creatorcontrib><creatorcontrib>Rosa, João Luís</creatorcontrib><creatorcontrib>Lobo, Francisco S N</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Tiago B</au><au>Rosa, João Luís</au><au>Lobo, Francisco S N</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cosmology in scalar-tensor \(f(R,T)\) gravity</atitle><jtitle>arXiv.org</jtitle><date>2022-03-11</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>In this work, we use reconstruction methods to obtain cosmological solutions in the recently developed scalar-tensor representation of \(f(R,T)\) gravity. Assuming that matter is described by an isotropic perfect fluid and the spacetime is homogeneous and isotropic, i.e., the Friedmann-Lemaître-Robsertson-Walker (FLRW) universe, the energy density, the pressure, and the scalar field associated with the arbitrary dependency of the action in \(T\) can be written generally as functions of the scale factor. We then select three particular forms of the scale factor: an exponential expansion with \({a(t)\propto e^t}\) (motivated by the de Sitter solution); and two types of power-law expansion with \({a(t)\propto t^{1/2}}\) and \({a(t)\propto t^{2/3}}\) (motivated by the behaviors of radiation- and matter-dominated universes in general relativity, respectively). A complete analysis for different curvature parameters \({k=\{-1,0,1\}}\) and equation of state parameters \({w=\{-1,0,1/3\}}\) is provided. Finally, the explicit forms of the functions \(f\left(R,T\right)\) associated with the scalar-field potentials of the representation used are deduced.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2112.02541</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2607473286 |
source | Free E- Journals |
subjects | Cosmology Equations of state Flux density Mathematical analysis Parameters Relativity Representations Scalars Tensors |
title | Cosmology in scalar-tensor \(f(R,T)\) gravity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cosmology%20in%20scalar-tensor%20%5C(f(R,T)%5C)%20gravity&rft.jtitle=arXiv.org&rft.au=Gon%C3%A7alves,%20Tiago%20B&rft.date=2022-03-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2112.02541&rft_dat=%3Cproquest%3E2607473286%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607473286&rft_id=info:pmid/&rfr_iscdi=true |