Estimating dynamic treatment effects in event studies with heterogeneous treatment effects

To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2021-12, Vol.225 (2), p.175-199
Hauptverfasser: Sun, Liyang, Abraham, Sarah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 199
container_issue 2
container_start_page 175
container_title Journal of econometrics
container_volume 225
creator Sun, Liyang
Abraham, Sarah
description To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application.
doi_str_mv 10.1016/j.jeconom.2020.09.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607322912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440762030378X</els_id><sourcerecordid>2607322912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKHguXWStmlyElnWP7DgRS9eQptOdlNssybpyn57u-zePAgDA8N7b3g_Qm4pZBQov--yDrUbXJ8xYJCBzAD4GZlRUbGUC1mekxnkUKQFVPySXIXQAUBZiHxGPpch2r6Odlgn7X6oe6uT6LGOPQ4xQWNQx5DYIcHd4RDi2FoMyY-Nm2SDEb1b44BuDH9d1-TC1F8Bb057Tj6elu-Ll3T19vy6eFylOq8gplpURjdStAJ4ySUtKGpZCNk02iBgoaehNatoC7mpCwm6MliXmmmqTcNFPid3x9ytd98jhqg6N_pheqkYhypnTFI2qcqjSnsXgkejtn4q7veKgjpgVJ06YVQHjAqkmjBOvoejD6cKO4teBW1x0NhaP7VUrbP_JPwChF2AxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607322912</pqid></control><display><type>article</type><title>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sun, Liyang ; Abraham, Sarah</creator><creatorcontrib>Sun, Liyang ; Abraham, Sarah</creatorcontrib><description>To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.09.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Contamination ; Difference-in-differences ; Estimating techniques ; Impact analysis ; Pretrend test ; Quantitative analysis ; Regression analysis ; Two-way fixed effects</subject><ispartof>Journal of econometrics, 2021-12, Vol.225 (2), p.175-199</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</citedby><cites>FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Abraham, Sarah</creatorcontrib><title>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</title><title>Journal of econometrics</title><description>To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application.</description><subject>Contamination</subject><subject>Difference-in-differences</subject><subject>Estimating techniques</subject><subject>Impact analysis</subject><subject>Pretrend test</subject><subject>Quantitative analysis</subject><subject>Regression analysis</subject><subject>Two-way fixed effects</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKHguXWStmlyElnWP7DgRS9eQptOdlNssybpyn57u-zePAgDA8N7b3g_Qm4pZBQov--yDrUbXJ8xYJCBzAD4GZlRUbGUC1mekxnkUKQFVPySXIXQAUBZiHxGPpch2r6Odlgn7X6oe6uT6LGOPQ4xQWNQx5DYIcHd4RDi2FoMyY-Nm2SDEb1b44BuDH9d1-TC1F8Bb057Tj6elu-Ll3T19vy6eFylOq8gplpURjdStAJ4ySUtKGpZCNk02iBgoaehNatoC7mpCwm6MliXmmmqTcNFPid3x9ytd98jhqg6N_pheqkYhypnTFI2qcqjSnsXgkejtn4q7veKgjpgVJ06YVQHjAqkmjBOvoejD6cKO4teBW1x0NhaP7VUrbP_JPwChF2AxA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Sun, Liyang</creator><creator>Abraham, Sarah</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202112</creationdate><title>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</title><author>Sun, Liyang ; Abraham, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Contamination</topic><topic>Difference-in-differences</topic><topic>Estimating techniques</topic><topic>Impact analysis</topic><topic>Pretrend test</topic><topic>Quantitative analysis</topic><topic>Regression analysis</topic><topic>Two-way fixed effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Abraham, Sarah</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Liyang</au><au>Abraham, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</atitle><jtitle>Journal of econometrics</jtitle><date>2021-12</date><risdate>2021</risdate><volume>225</volume><issue>2</issue><spage>175</spage><epage>199</epage><pages>175-199</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.09.006</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2021-12, Vol.225 (2), p.175-199
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2607322912
source Access via ScienceDirect (Elsevier)
subjects Contamination
Difference-in-differences
Estimating techniques
Impact analysis
Pretrend test
Quantitative analysis
Regression analysis
Two-way fixed effects
title Estimating dynamic treatment effects in event studies with heterogeneous treatment effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20dynamic%20treatment%20effects%20in%20event%20studies%20with%20heterogeneous%20treatment%20effects&rft.jtitle=Journal%20of%20econometrics&rft.au=Sun,%20Liyang&rft.date=2021-12&rft.volume=225&rft.issue=2&rft.spage=175&rft.epage=199&rft.pages=175-199&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.09.006&rft_dat=%3Cproquest_cross%3E2607322912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607322912&rft_id=info:pmid/&rft_els_id=S030440762030378X&rfr_iscdi=true