Estimating dynamic treatment effects in event studies with heterogeneous treatment effects
To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by eff...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2021-12, Vol.225 (2), p.175-199 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 2 |
container_start_page | 175 |
container_title | Journal of econometrics |
container_volume | 225 |
creator | Sun, Liyang Abraham, Sarah |
description | To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application. |
doi_str_mv | 10.1016/j.jeconom.2020.09.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2607322912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S030440762030378X</els_id><sourcerecordid>2607322912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKHguXWStmlyElnWP7DgRS9eQptOdlNssybpyn57u-zePAgDA8N7b3g_Qm4pZBQov--yDrUbXJ8xYJCBzAD4GZlRUbGUC1mekxnkUKQFVPySXIXQAUBZiHxGPpch2r6Odlgn7X6oe6uT6LGOPQ4xQWNQx5DYIcHd4RDi2FoMyY-Nm2SDEb1b44BuDH9d1-TC1F8Bb057Tj6elu-Ll3T19vy6eFylOq8gplpURjdStAJ4ySUtKGpZCNk02iBgoaehNatoC7mpCwm6MliXmmmqTcNFPid3x9ytd98jhqg6N_pheqkYhypnTFI2qcqjSnsXgkejtn4q7veKgjpgVJ06YVQHjAqkmjBOvoejD6cKO4teBW1x0NhaP7VUrbP_JPwChF2AxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607322912</pqid></control><display><type>article</type><title>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sun, Liyang ; Abraham, Sarah</creator><creatorcontrib>Sun, Liyang ; Abraham, Sarah</creatorcontrib><description>To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2020.09.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Contamination ; Difference-in-differences ; Estimating techniques ; Impact analysis ; Pretrend test ; Quantitative analysis ; Regression analysis ; Two-way fixed effects</subject><ispartof>Journal of econometrics, 2021-12, Vol.225 (2), p.175-199</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</citedby><cites>FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2020.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Abraham, Sarah</creatorcontrib><title>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</title><title>Journal of econometrics</title><description>To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application.</description><subject>Contamination</subject><subject>Difference-in-differences</subject><subject>Estimating techniques</subject><subject>Impact analysis</subject><subject>Pretrend test</subject><subject>Quantitative analysis</subject><subject>Regression analysis</subject><subject>Two-way fixed effects</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKHguXWStmlyElnWP7DgRS9eQptOdlNssybpyn57u-zePAgDA8N7b3g_Qm4pZBQov--yDrUbXJ8xYJCBzAD4GZlRUbGUC1mekxnkUKQFVPySXIXQAUBZiHxGPpch2r6Odlgn7X6oe6uT6LGOPQ4xQWNQx5DYIcHd4RDi2FoMyY-Nm2SDEb1b44BuDH9d1-TC1F8Bb057Tj6elu-Ll3T19vy6eFylOq8gplpURjdStAJ4ySUtKGpZCNk02iBgoaehNatoC7mpCwm6MliXmmmqTcNFPid3x9ytd98jhqg6N_pheqkYhypnTFI2qcqjSnsXgkejtn4q7veKgjpgVJ06YVQHjAqkmjBOvoejD6cKO4teBW1x0NhaP7VUrbP_JPwChF2AxA</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Sun, Liyang</creator><creator>Abraham, Sarah</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202112</creationdate><title>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</title><author>Sun, Liyang ; Abraham, Sarah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-c87fcb98d806569141ec9489bbcfe0e4ce4c1a271d03fa490c7fea5c2c1cfb683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Contamination</topic><topic>Difference-in-differences</topic><topic>Estimating techniques</topic><topic>Impact analysis</topic><topic>Pretrend test</topic><topic>Quantitative analysis</topic><topic>Regression analysis</topic><topic>Two-way fixed effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Liyang</creatorcontrib><creatorcontrib>Abraham, Sarah</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Liyang</au><au>Abraham, Sarah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating dynamic treatment effects in event studies with heterogeneous treatment effects</atitle><jtitle>Journal of econometrics</jtitle><date>2021-12</date><risdate>2021</risdate><volume>225</volume><issue>2</issue><spage>175</spage><epage>199</epage><pages>175-199</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>To estimate the dynamic effects of an absorbing treatment, researchers often use two-way fixed effects regressions that include leads and lags of the treatment. We show that in settings with variation in treatment timing across units, the coefficient on a given lead or lag can be contaminated by effects from other periods, and apparent pretrends can arise solely from treatment effects heterogeneity. We propose an alternative estimator that is free of contamination, and illustrate the relative shortcomings of two-way fixed effects regressions with leads and lags through an empirical application.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2020.09.006</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2021-12, Vol.225 (2), p.175-199 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_journals_2607322912 |
source | Access via ScienceDirect (Elsevier) |
subjects | Contamination Difference-in-differences Estimating techniques Impact analysis Pretrend test Quantitative analysis Regression analysis Two-way fixed effects |
title | Estimating dynamic treatment effects in event studies with heterogeneous treatment effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T02%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20dynamic%20treatment%20effects%20in%20event%20studies%20with%20heterogeneous%20treatment%20effects&rft.jtitle=Journal%20of%20econometrics&rft.au=Sun,%20Liyang&rft.date=2021-12&rft.volume=225&rft.issue=2&rft.spage=175&rft.epage=199&rft.pages=175-199&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2020.09.006&rft_dat=%3Cproquest_cross%3E2607322912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607322912&rft_id=info:pmid/&rft_els_id=S030440762030378X&rfr_iscdi=true |