Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning
Purpose Conventional predictive models are based on a combination of clinical and neuroimaging parameters using traditional statistical approaches. Emerging studies have shown that the machine learning (ML) prediction models with multiple pretreatment clinical variables have the potential to accurat...
Gespeichert in:
Veröffentlicht in: | Clinical neuroradiology (Munich) 2021-12, Vol.31 (4), p.1121-1130 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1130 |
---|---|
container_issue | 4 |
container_start_page | 1121 |
container_title | Clinical neuroradiology (Munich) |
container_volume | 31 |
creator | Teo, Yao Hao Lim, Isis Claire Z. Y Tseng, Fan Shuen Teo, Yao Neng Kow, Cheryl Shumin Ng, Zi Hui Celeste Chan Ko Ko, Nyein |
description | Purpose Conventional predictive models are based on a combination of clinical and neuroimaging parameters using traditional statistical approaches. Emerging studies have shown that the machine learning (ML) prediction models with multiple pretreatment clinical variables have the potential to accurately prognosticate the outcomes in acute ischemic stroke (AIS) patients undergoing thrombectomy, and hence identify patients suitable for thrombectomy. This article summarizes the published studies on ML models in large vessel occlusion AIS patients undergoing thrombectomy. Methods We searched electronic databases including PubMed from 1 January 2000 up to 14 October 2019 for studies that evaluated ML algorithms for the prediction of outcomes in stroke patients undergoing thrombectomy. We then used random-effects bivariate meta-analysis models to summarize the studies. Results We retained a total of five studies that evaluated ML (4 support vector machine, 1 decision tree model) with a combined cohort of 802 patients. The prevalence of good functional outcome defined by 90-day mRS of 0-2 when available. Random effects model demonstrated that the AUC was 0.846 (95% confidence interval, CI 0.686-0.902). A pooled diagnostic odds ratio of 12.6 was computed. The pooled sensitivity and specificity were 0.795 (95% CI 0.651-0.889) and 0.780 (95% CI 0.634-0.879), respectively. Conclusion ML may be useful as an adjunct to clinical assessment to predict functional outcomes in AIS patients undergoing thrombectomy, and hence identify suitable patients for treatment. Further studies validating ML models in large multicenter cohorts are necessary to explore this further. |
doi_str_mv | 10.1007/s00062-020-00990-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2607083086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718265288</galeid><sourcerecordid>A718265288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1446-942985a8cf7412883926342ac809e3c69192ed05110a526852cb4002005e6d9b3</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoKNU_4Cngeesku5tNjqVULVRaUM9Lmp220d1Ek6zSf-8WRT3IHGYYvjdveIRcMhgzgOo6AoDgGXDIAJSCLD8iZ0wKlbGiqI5_5lydkosYnwcccqnKsjoj-1XAxppk3ZZOW-us0S1d9sn4DiO1jk5Mn5DOo9lhZw19SMG_IF3pZNGlSJ9cg2HrD_KZa_y7jqZvdaCPu-C7NZrkuz39sGlH77XZWYd0gTq4gT8nJxvdRrz47iPydDN7nN5li-XtfDpZZGb4XmSq4EqWWppNVTAuZa64yAuujQSFuRGKKY4NlIyBLrmQJTfrAoYsoETRqHU-Ildfd1-Df-sxpvrZ98ENljUXUIHMQYpfaqtbrK3b-BS06Ww09aRikovy4D0i43-ooZpDON7hxg77P4JPQlJ7HA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607083086</pqid></control><display><type>article</type><title>Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Teo, Yao Hao ; Lim, Isis Claire Z. Y ; Tseng, Fan Shuen ; Teo, Yao Neng ; Kow, Cheryl Shumin ; Ng, Zi Hui Celeste ; Chan Ko Ko, Nyein</creator><creatorcontrib>Teo, Yao Hao ; Lim, Isis Claire Z. Y ; Tseng, Fan Shuen ; Teo, Yao Neng ; Kow, Cheryl Shumin ; Ng, Zi Hui Celeste ; Chan Ko Ko, Nyein</creatorcontrib><description>Purpose Conventional predictive models are based on a combination of clinical and neuroimaging parameters using traditional statistical approaches. Emerging studies have shown that the machine learning (ML) prediction models with multiple pretreatment clinical variables have the potential to accurately prognosticate the outcomes in acute ischemic stroke (AIS) patients undergoing thrombectomy, and hence identify patients suitable for thrombectomy. This article summarizes the published studies on ML models in large vessel occlusion AIS patients undergoing thrombectomy. Methods We searched electronic databases including PubMed from 1 January 2000 up to 14 October 2019 for studies that evaluated ML algorithms for the prediction of outcomes in stroke patients undergoing thrombectomy. We then used random-effects bivariate meta-analysis models to summarize the studies. Results We retained a total of five studies that evaluated ML (4 support vector machine, 1 decision tree model) with a combined cohort of 802 patients. The prevalence of good functional outcome defined by 90-day mRS of 0-2 when available. Random effects model demonstrated that the AUC was 0.846 (95% confidence interval, CI 0.686-0.902). A pooled diagnostic odds ratio of 12.6 was computed. The pooled sensitivity and specificity were 0.795 (95% CI 0.651-0.889) and 0.780 (95% CI 0.634-0.879), respectively. Conclusion ML may be useful as an adjunct to clinical assessment to predict functional outcomes in AIS patients undergoing thrombectomy, and hence identify suitable patients for treatment. Further studies validating ML models in large multicenter cohorts are necessary to explore this further.</description><identifier>ISSN: 1869-1439</identifier><identifier>EISSN: 1869-1447</identifier><identifier>DOI: 10.1007/s00062-020-00990-3</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Clinical outcomes ; Ischemia ; Machine learning ; Medical colleges ; Medical research ; Medicine, Experimental ; Patient outcomes ; Stroke ; Stroke (Disease) ; Stroke patients</subject><ispartof>Clinical neuroradiology (Munich), 2021-12, Vol.31 (4), p.1121-1130</ispartof><rights>COPYRIGHT 2021 Springer</rights><rights>Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1446-942985a8cf7412883926342ac809e3c69192ed05110a526852cb4002005e6d9b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Teo, Yao Hao</creatorcontrib><creatorcontrib>Lim, Isis Claire Z. Y</creatorcontrib><creatorcontrib>Tseng, Fan Shuen</creatorcontrib><creatorcontrib>Teo, Yao Neng</creatorcontrib><creatorcontrib>Kow, Cheryl Shumin</creatorcontrib><creatorcontrib>Ng, Zi Hui Celeste</creatorcontrib><creatorcontrib>Chan Ko Ko, Nyein</creatorcontrib><title>Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning</title><title>Clinical neuroradiology (Munich)</title><description>Purpose Conventional predictive models are based on a combination of clinical and neuroimaging parameters using traditional statistical approaches. Emerging studies have shown that the machine learning (ML) prediction models with multiple pretreatment clinical variables have the potential to accurately prognosticate the outcomes in acute ischemic stroke (AIS) patients undergoing thrombectomy, and hence identify patients suitable for thrombectomy. This article summarizes the published studies on ML models in large vessel occlusion AIS patients undergoing thrombectomy. Methods We searched electronic databases including PubMed from 1 January 2000 up to 14 October 2019 for studies that evaluated ML algorithms for the prediction of outcomes in stroke patients undergoing thrombectomy. We then used random-effects bivariate meta-analysis models to summarize the studies. Results We retained a total of five studies that evaluated ML (4 support vector machine, 1 decision tree model) with a combined cohort of 802 patients. The prevalence of good functional outcome defined by 90-day mRS of 0-2 when available. Random effects model demonstrated that the AUC was 0.846 (95% confidence interval, CI 0.686-0.902). A pooled diagnostic odds ratio of 12.6 was computed. The pooled sensitivity and specificity were 0.795 (95% CI 0.651-0.889) and 0.780 (95% CI 0.634-0.879), respectively. Conclusion ML may be useful as an adjunct to clinical assessment to predict functional outcomes in AIS patients undergoing thrombectomy, and hence identify suitable patients for treatment. Further studies validating ML models in large multicenter cohorts are necessary to explore this further.</description><subject>Algorithms</subject><subject>Clinical outcomes</subject><subject>Ischemia</subject><subject>Machine learning</subject><subject>Medical colleges</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Patient outcomes</subject><subject>Stroke</subject><subject>Stroke (Disease)</subject><subject>Stroke patients</subject><issn>1869-1439</issn><issn>1869-1447</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNptkEFLAzEQhYMoKNU_4Cngeesku5tNjqVULVRaUM9Lmp220d1Ek6zSf-8WRT3IHGYYvjdveIRcMhgzgOo6AoDgGXDIAJSCLD8iZ0wKlbGiqI5_5lydkosYnwcccqnKsjoj-1XAxppk3ZZOW-us0S1d9sn4DiO1jk5Mn5DOo9lhZw19SMG_IF3pZNGlSJ9cg2HrD_KZa_y7jqZvdaCPu-C7NZrkuz39sGlH77XZWYd0gTq4gT8nJxvdRrz47iPydDN7nN5li-XtfDpZZGb4XmSq4EqWWppNVTAuZa64yAuujQSFuRGKKY4NlIyBLrmQJTfrAoYsoETRqHU-Ildfd1-Df-sxpvrZ98ENljUXUIHMQYpfaqtbrK3b-BS06Ww09aRikovy4D0i43-ooZpDON7hxg77P4JPQlJ7HA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Teo, Yao Hao</creator><creator>Lim, Isis Claire Z. Y</creator><creator>Tseng, Fan Shuen</creator><creator>Teo, Yao Neng</creator><creator>Kow, Cheryl Shumin</creator><creator>Ng, Zi Hui Celeste</creator><creator>Chan Ko Ko, Nyein</creator><general>Springer</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20211201</creationdate><title>Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning</title><author>Teo, Yao Hao ; Lim, Isis Claire Z. Y ; Tseng, Fan Shuen ; Teo, Yao Neng ; Kow, Cheryl Shumin ; Ng, Zi Hui Celeste ; Chan Ko Ko, Nyein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1446-942985a8cf7412883926342ac809e3c69192ed05110a526852cb4002005e6d9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Clinical outcomes</topic><topic>Ischemia</topic><topic>Machine learning</topic><topic>Medical colleges</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Patient outcomes</topic><topic>Stroke</topic><topic>Stroke (Disease)</topic><topic>Stroke patients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teo, Yao Hao</creatorcontrib><creatorcontrib>Lim, Isis Claire Z. Y</creatorcontrib><creatorcontrib>Tseng, Fan Shuen</creatorcontrib><creatorcontrib>Teo, Yao Neng</creatorcontrib><creatorcontrib>Kow, Cheryl Shumin</creatorcontrib><creatorcontrib>Ng, Zi Hui Celeste</creatorcontrib><creatorcontrib>Chan Ko Ko, Nyein</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Clinical neuroradiology (Munich)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teo, Yao Hao</au><au>Lim, Isis Claire Z. Y</au><au>Tseng, Fan Shuen</au><au>Teo, Yao Neng</au><au>Kow, Cheryl Shumin</au><au>Ng, Zi Hui Celeste</au><au>Chan Ko Ko, Nyein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning</atitle><jtitle>Clinical neuroradiology (Munich)</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>31</volume><issue>4</issue><spage>1121</spage><epage>1130</epage><pages>1121-1130</pages><issn>1869-1439</issn><eissn>1869-1447</eissn><abstract>Purpose Conventional predictive models are based on a combination of clinical and neuroimaging parameters using traditional statistical approaches. Emerging studies have shown that the machine learning (ML) prediction models with multiple pretreatment clinical variables have the potential to accurately prognosticate the outcomes in acute ischemic stroke (AIS) patients undergoing thrombectomy, and hence identify patients suitable for thrombectomy. This article summarizes the published studies on ML models in large vessel occlusion AIS patients undergoing thrombectomy. Methods We searched electronic databases including PubMed from 1 January 2000 up to 14 October 2019 for studies that evaluated ML algorithms for the prediction of outcomes in stroke patients undergoing thrombectomy. We then used random-effects bivariate meta-analysis models to summarize the studies. Results We retained a total of five studies that evaluated ML (4 support vector machine, 1 decision tree model) with a combined cohort of 802 patients. The prevalence of good functional outcome defined by 90-day mRS of 0-2 when available. Random effects model demonstrated that the AUC was 0.846 (95% confidence interval, CI 0.686-0.902). A pooled diagnostic odds ratio of 12.6 was computed. The pooled sensitivity and specificity were 0.795 (95% CI 0.651-0.889) and 0.780 (95% CI 0.634-0.879), respectively. Conclusion ML may be useful as an adjunct to clinical assessment to predict functional outcomes in AIS patients undergoing thrombectomy, and hence identify suitable patients for treatment. Further studies validating ML models in large multicenter cohorts are necessary to explore this further.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00062-020-00990-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1439 |
ispartof | Clinical neuroradiology (Munich), 2021-12, Vol.31 (4), p.1121-1130 |
issn | 1869-1439 1869-1447 |
language | eng |
recordid | cdi_proquest_journals_2607083086 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Clinical outcomes Ischemia Machine learning Medical colleges Medical research Medicine, Experimental Patient outcomes Stroke Stroke (Disease) Stroke patients |
title | Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Clinical%20Outcomes%20in%20Acute%20Ischemic%20Stroke%20Patients%20Undergoing%20Endovascular%20Thrombectomy%20with%20Machine%20Learning&rft.jtitle=Clinical%20neuroradiology%20(Munich)&rft.au=Teo,%20Yao%20Hao&rft.date=2021-12-01&rft.volume=31&rft.issue=4&rft.spage=1121&rft.epage=1130&rft.pages=1121-1130&rft.issn=1869-1439&rft.eissn=1869-1447&rft_id=info:doi/10.1007/s00062-020-00990-3&rft_dat=%3Cgale_proqu%3EA718265288%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607083086&rft_id=info:pmid/&rft_galeid=A718265288&rfr_iscdi=true |