A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries
A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to th...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2021-12, Vol.181, p.121855, Article 121855 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 121855 |
container_title | International journal of heat and mass transfer |
container_volume | 181 |
creator | He, C.X. Yue, Q.L. Wu, M.C. Chen, Q. Zhao, T.S. |
description | A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2021.121855 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2606930642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021009601</els_id><sourcerecordid>2606930642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwHyyxsKTYSeo4G1X5ViUWmK2rc1YcJXGwHVD_PakKCyxMp1f36NXdQ8gVZwvOuLhuFrapEWIHIUQPfTDoFylL-YKnXC6XR2TGZVEmUyiPyYwxXiRlxtkpOQuh2UeWixn5XNHslmKLOnqna-yshjaJNfoOWqrdOLRY0c5V2FLj_G-SQl_RHxp6aHfBBuoMHdyo6yTuBqStjbUdu8S6nm4hRvQWwzk5MdAGvPiec_J2f_e6fkw2Lw9P69Um0VnBYiIymVVG6hJMIbZ5oUuJW42pBFaUTAiQptKGScMqjVBuWb40ZokS0hzyXItsTi4PvYN37yOGqBo3-unQoFLBRJkxkacTdXOgtHcheDRq8LYDv1Ocqb1u1ai_utVetzroniqeDxU4ffNhp23QFnuNlfWTMlU5-_-yLxjsmHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606930642</pqid></control><display><type>article</type><title>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>He, C.X. ; Yue, Q.L. ; Wu, M.C. ; Chen, Q. ; Zhao, T.S.</creator><creatorcontrib>He, C.X. ; Yue, Q.L. ; Wu, M.C. ; Chen, Q. ; Zhao, T.S.</creatorcontrib><description>A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.121855</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemical reactions ; Current density ; Discharge ; Electrochemical and thermal characteristics ; Electrochemical-thermal coupled model ; Free convection ; Heat ; Heat generation ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Local current ; Management systems ; Rechargeable batteries ; Temperature distribution ; Temperature uniformity ; Thermal analysis ; Thermal management ; Three dimensional models</subject><ispartof>International journal of heat and mass transfer, 2021-12, Vol.181, p.121855, Article 121855</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</citedby><cites>FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121855$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>He, C.X.</creatorcontrib><creatorcontrib>Yue, Q.L.</creatorcontrib><creatorcontrib>Wu, M.C.</creatorcontrib><creatorcontrib>Chen, Q.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><title>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</title><title>International journal of heat and mass transfer</title><description>A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems.</description><subject>Chemical reactions</subject><subject>Current density</subject><subject>Discharge</subject><subject>Electrochemical and thermal characteristics</subject><subject>Electrochemical-thermal coupled model</subject><subject>Free convection</subject><subject>Heat</subject><subject>Heat generation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Local current</subject><subject>Management systems</subject><subject>Rechargeable batteries</subject><subject>Temperature distribution</subject><subject>Temperature uniformity</subject><subject>Thermal analysis</subject><subject>Thermal management</subject><subject>Three dimensional models</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwHyyxsKTYSeo4G1X5ViUWmK2rc1YcJXGwHVD_PakKCyxMp1f36NXdQ8gVZwvOuLhuFrapEWIHIUQPfTDoFylL-YKnXC6XR2TGZVEmUyiPyYwxXiRlxtkpOQuh2UeWixn5XNHslmKLOnqna-yshjaJNfoOWqrdOLRY0c5V2FLj_G-SQl_RHxp6aHfBBuoMHdyo6yTuBqStjbUdu8S6nm4hRvQWwzk5MdAGvPiec_J2f_e6fkw2Lw9P69Um0VnBYiIymVVG6hJMIbZ5oUuJW42pBFaUTAiQptKGScMqjVBuWb40ZokS0hzyXItsTi4PvYN37yOGqBo3-unQoFLBRJkxkacTdXOgtHcheDRq8LYDv1Ocqb1u1ai_utVetzroniqeDxU4ffNhp23QFnuNlfWTMlU5-_-yLxjsmHg</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>He, C.X.</creator><creator>Yue, Q.L.</creator><creator>Wu, M.C.</creator><creator>Chen, Q.</creator><creator>Zhao, T.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202112</creationdate><title>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</title><author>He, C.X. ; Yue, Q.L. ; Wu, M.C. ; Chen, Q. ; Zhao, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical reactions</topic><topic>Current density</topic><topic>Discharge</topic><topic>Electrochemical and thermal characteristics</topic><topic>Electrochemical-thermal coupled model</topic><topic>Free convection</topic><topic>Heat</topic><topic>Heat generation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Local current</topic><topic>Management systems</topic><topic>Rechargeable batteries</topic><topic>Temperature distribution</topic><topic>Temperature uniformity</topic><topic>Thermal analysis</topic><topic>Thermal management</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, C.X.</creatorcontrib><creatorcontrib>Yue, Q.L.</creatorcontrib><creatorcontrib>Wu, M.C.</creatorcontrib><creatorcontrib>Chen, Q.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, C.X.</au><au>Yue, Q.L.</au><au>Wu, M.C.</au><au>Chen, Q.</au><au>Zhao, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2021-12</date><risdate>2021</risdate><volume>181</volume><spage>121855</spage><pages>121855-</pages><artnum>121855</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.121855</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2021-12, Vol.181, p.121855, Article 121855 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2606930642 |
source | Elsevier ScienceDirect Journals |
subjects | Chemical reactions Current density Discharge Electrochemical and thermal characteristics Electrochemical-thermal coupled model Free convection Heat Heat generation Lithium Lithium-ion batteries Lithium-ion battery Local current Management systems Rechargeable batteries Temperature distribution Temperature uniformity Thermal analysis Thermal management Three dimensional models |
title | A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20electrochemical-thermal%20coupled%20model%20for%20electrochemical%20and%20thermal%20analysis%20of%20pouch-type%20lithium-ion%20batteries&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=He,%20C.X.&rft.date=2021-12&rft.volume=181&rft.spage=121855&rft.pages=121855-&rft.artnum=121855&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.121855&rft_dat=%3Cproquest_cross%3E2606930642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606930642&rft_id=info:pmid/&rft_els_id=S0017931021009601&rfr_iscdi=true |