A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries

A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2021-12, Vol.181, p.121855, Article 121855
Hauptverfasser: He, C.X., Yue, Q.L., Wu, M.C., Chen, Q., Zhao, T.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121855
container_title International journal of heat and mass transfer
container_volume 181
creator He, C.X.
Yue, Q.L.
Wu, M.C.
Chen, Q.
Zhao, T.S.
description A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems.
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.121855
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2606930642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021009601</els_id><sourcerecordid>2606930642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEqXwHyyxsKTYSeo4G1X5ViUWmK2rc1YcJXGwHVD_PakKCyxMp1f36NXdQ8gVZwvOuLhuFrapEWIHIUQPfTDoFylL-YKnXC6XR2TGZVEmUyiPyYwxXiRlxtkpOQuh2UeWixn5XNHslmKLOnqna-yshjaJNfoOWqrdOLRY0c5V2FLj_G-SQl_RHxp6aHfBBuoMHdyo6yTuBqStjbUdu8S6nm4hRvQWwzk5MdAGvPiec_J2f_e6fkw2Lw9P69Um0VnBYiIymVVG6hJMIbZ5oUuJW42pBFaUTAiQptKGScMqjVBuWb40ZokS0hzyXItsTi4PvYN37yOGqBo3-unQoFLBRJkxkacTdXOgtHcheDRq8LYDv1Ocqb1u1ai_utVetzroniqeDxU4ffNhp23QFnuNlfWTMlU5-_-yLxjsmHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606930642</pqid></control><display><type>article</type><title>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>He, C.X. ; Yue, Q.L. ; Wu, M.C. ; Chen, Q. ; Zhao, T.S.</creator><creatorcontrib>He, C.X. ; Yue, Q.L. ; Wu, M.C. ; Chen, Q. ; Zhao, T.S.</creatorcontrib><description>A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.121855</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Chemical reactions ; Current density ; Discharge ; Electrochemical and thermal characteristics ; Electrochemical-thermal coupled model ; Free convection ; Heat ; Heat generation ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Local current ; Management systems ; Rechargeable batteries ; Temperature distribution ; Temperature uniformity ; Thermal analysis ; Thermal management ; Three dimensional models</subject><ispartof>International journal of heat and mass transfer, 2021-12, Vol.181, p.121855, Article 121855</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</citedby><cites>FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.121855$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>He, C.X.</creatorcontrib><creatorcontrib>Yue, Q.L.</creatorcontrib><creatorcontrib>Wu, M.C.</creatorcontrib><creatorcontrib>Chen, Q.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><title>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</title><title>International journal of heat and mass transfer</title><description>A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems.</description><subject>Chemical reactions</subject><subject>Current density</subject><subject>Discharge</subject><subject>Electrochemical and thermal characteristics</subject><subject>Electrochemical-thermal coupled model</subject><subject>Free convection</subject><subject>Heat</subject><subject>Heat generation</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Local current</subject><subject>Management systems</subject><subject>Rechargeable batteries</subject><subject>Temperature distribution</subject><subject>Temperature uniformity</subject><subject>Thermal analysis</subject><subject>Thermal management</subject><subject>Three dimensional models</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEqXwHyyxsKTYSeo4G1X5ViUWmK2rc1YcJXGwHVD_PakKCyxMp1f36NXdQ8gVZwvOuLhuFrapEWIHIUQPfTDoFylL-YKnXC6XR2TGZVEmUyiPyYwxXiRlxtkpOQuh2UeWixn5XNHslmKLOnqna-yshjaJNfoOWqrdOLRY0c5V2FLj_G-SQl_RHxp6aHfBBuoMHdyo6yTuBqStjbUdu8S6nm4hRvQWwzk5MdAGvPiec_J2f_e6fkw2Lw9P69Um0VnBYiIymVVG6hJMIbZ5oUuJW42pBFaUTAiQptKGScMqjVBuWb40ZokS0hzyXItsTi4PvYN37yOGqBo3-unQoFLBRJkxkacTdXOgtHcheDRq8LYDv1Ocqb1u1ai_utVetzroniqeDxU4ffNhp23QFnuNlfWTMlU5-_-yLxjsmHg</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>He, C.X.</creator><creator>Yue, Q.L.</creator><creator>Wu, M.C.</creator><creator>Chen, Q.</creator><creator>Zhao, T.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202112</creationdate><title>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</title><author>He, C.X. ; Yue, Q.L. ; Wu, M.C. ; Chen, Q. ; Zhao, T.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6383df8c9af76b47c98ebce28a079066a8fdcf08f0dcea9b045ff5e8a24a44c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemical reactions</topic><topic>Current density</topic><topic>Discharge</topic><topic>Electrochemical and thermal characteristics</topic><topic>Electrochemical-thermal coupled model</topic><topic>Free convection</topic><topic>Heat</topic><topic>Heat generation</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Local current</topic><topic>Management systems</topic><topic>Rechargeable batteries</topic><topic>Temperature distribution</topic><topic>Temperature uniformity</topic><topic>Thermal analysis</topic><topic>Thermal management</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, C.X.</creatorcontrib><creatorcontrib>Yue, Q.L.</creatorcontrib><creatorcontrib>Wu, M.C.</creatorcontrib><creatorcontrib>Chen, Q.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, C.X.</au><au>Yue, Q.L.</au><au>Wu, M.C.</au><au>Chen, Q.</au><au>Zhao, T.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2021-12</date><risdate>2021</risdate><volume>181</volume><spage>121855</spage><pages>121855-</pages><artnum>121855</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>A three-dimensional electrochemical-thermal coupled model is developed to investigate the interactive electrochemical and thermal characteristics of pouch-type lithium-ion batteries under natural convection conditions. The heat generation rate calculated by the electrochemical model is applied to the thermal model as the heat source, while the temperature derived from the thermal model is regarded as the initial condition for the electrochemical model. The simulations are verified by the experimental data under different discharge rates (1, 3, and 5 C). Numerical results reveal that the average particle size of electrodes directly affects the heat generation rate of the battery during the discharge process. More importantly, it is found that in the in-plane direction, the maximum local current density appears near the tabs initially and moves to the bottom side with the progress of the discharge as the regions away from tabs becomes more favorable for electrochemical reactions. The uneven distribution of local current density results in a non-uniform distribution of the heat generation rate and thus the uneven temperature distribution. In addition, the temperature gradient in the through-plane direction is relatively small under natural convection conditions. This work offers more insights into heat generation mechanisms in lithium-ion batteries, which will assist the design of efficient battery thermal management systems.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.121855</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2021-12, Vol.181, p.121855, Article 121855
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2606930642
source Elsevier ScienceDirect Journals
subjects Chemical reactions
Current density
Discharge
Electrochemical and thermal characteristics
Electrochemical-thermal coupled model
Free convection
Heat
Heat generation
Lithium
Lithium-ion batteries
Lithium-ion battery
Local current
Management systems
Rechargeable batteries
Temperature distribution
Temperature uniformity
Thermal analysis
Thermal management
Three dimensional models
title A 3D electrochemical-thermal coupled model for electrochemical and thermal analysis of pouch-type lithium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%203D%20electrochemical-thermal%20coupled%20model%20for%20electrochemical%20and%20thermal%20analysis%20of%20pouch-type%20lithium-ion%20batteries&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=He,%20C.X.&rft.date=2021-12&rft.volume=181&rft.spage=121855&rft.pages=121855-&rft.artnum=121855&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.121855&rft_dat=%3Cproquest_cross%3E2606930642%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606930642&rft_id=info:pmid/&rft_els_id=S0017931021009601&rfr_iscdi=true