Probabilistic parameter estimation using a Gaussian mixture density network: application to X‐ray reflectivity data curve fitting

X‐ray reflectivity (XRR) is widely used for thin‐film structure analysis, and XRR data analysis involves minimizing the difference between experimental data and an XRR curve calculated from model parameters describing the thin‐film structure. This analysis takes a certain amount of time because it i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography 2021-12, Vol.54 (6), p.1572-1579
Hauptverfasser: Kim, Kook Tae, Lee, Dong Ryeol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 6
container_start_page 1572
container_title Journal of applied crystallography
container_volume 54
creator Kim, Kook Tae
Lee, Dong Ryeol
description X‐ray reflectivity (XRR) is widely used for thin‐film structure analysis, and XRR data analysis involves minimizing the difference between experimental data and an XRR curve calculated from model parameters describing the thin‐film structure. This analysis takes a certain amount of time because it involves many unavoidable iterations. However, the recently introduced artificial neural network (ANN) method can dramatically reduce the analysis time in the case of repeated analyses of similar samples. Here, the analysis of XRR data using a mixture density network (MDN) is demonstrated, which enables probabilistic prediction while maintaining the advantages of an ANN. First, under the assumption of a unimodal probability distribution of the output parameter, the trained MDN can estimate the best‐fit parameter and, at the same time, estimate the confidence interval (CI) corresponding to the error bar of the best‐fit parameter. The CI obtained in this manner is similar to that obtained using the Neumann process, a well known statistical method. Next, the MDN method provides several possible solutions for each parameter in the case of a multimodal distribution of the output parameters. An unsupervised machine learning method is used to cluster possible parameter sets in order of probability. Determining the true value by examining the candidates of the parameter sets obtained in this manner can help solve the inherent inverse problem associated with scattering data. A mixture density network (MDN), a neural network method that can make probabilistic predictions, is applied to X‐ray reflectivity data analysis. The probability distribution of several possible parameters obtained using an MDN can help estimate the confidence interval and solve the inverse problem.
doi_str_mv 10.1107/S1600576721009043
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2606911606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2606911606</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3238-ba686368c6f4cfe39288710ce29ba3a16edd33fa2ce97d7d1ded84ae3ccab973</originalsourceid><addsrcrecordid>eNqFUMFKw0AQDaJgrX6AtwXP0d1sukm8SdFWKShaxFuYbCayNU3i7qY1N8Ef8Bv9EjfEg-DB08w83nsz8zzvmNFTxmh09sAEpZNIRAGjNKEh3_FGPeT32O6vft87MGZFKXPUYOR93Ok6g0yVylglSQMa1mhRE3TzGqyqK9IaVT0TIDNojVFQkbV6s61GkmNllO1IhXZb65dzAk1TKjmobE2evt4_NXREY1GitGrTk3OwQGSrN0gKZa2zPvT2CigNHv3Usbe8ulxO5_7idnY9vVj4kgc89jMQseAilqIIZYE8CeI4YlRikGTAgQnMc84LCCQmUR7lLMc8DgG5lJAlER97J4Nto-vX1v2XrupWV25jGggqEuYyEo7FBpbUtTHu8rTRLgjdpYymfdTpn6idJhk0W1Vi978gvZneB4_zCQtj_g2qXIY3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606911606</pqid></control><display><type>article</type><title>Probabilistic parameter estimation using a Gaussian mixture density network: application to X‐ray reflectivity data curve fitting</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Kim, Kook Tae ; Lee, Dong Ryeol</creator><creatorcontrib>Kim, Kook Tae ; Lee, Dong Ryeol</creatorcontrib><description>X‐ray reflectivity (XRR) is widely used for thin‐film structure analysis, and XRR data analysis involves minimizing the difference between experimental data and an XRR curve calculated from model parameters describing the thin‐film structure. This analysis takes a certain amount of time because it involves many unavoidable iterations. However, the recently introduced artificial neural network (ANN) method can dramatically reduce the analysis time in the case of repeated analyses of similar samples. Here, the analysis of XRR data using a mixture density network (MDN) is demonstrated, which enables probabilistic prediction while maintaining the advantages of an ANN. First, under the assumption of a unimodal probability distribution of the output parameter, the trained MDN can estimate the best‐fit parameter and, at the same time, estimate the confidence interval (CI) corresponding to the error bar of the best‐fit parameter. The CI obtained in this manner is similar to that obtained using the Neumann process, a well known statistical method. Next, the MDN method provides several possible solutions for each parameter in the case of a multimodal distribution of the output parameters. An unsupervised machine learning method is used to cluster possible parameter sets in order of probability. Determining the true value by examining the candidates of the parameter sets obtained in this manner can help solve the inherent inverse problem associated with scattering data. A mixture density network (MDN), a neural network method that can make probabilistic predictions, is applied to X‐ray reflectivity data analysis. The probability distribution of several possible parameters obtained using an MDN can help estimate the confidence interval and solve the inverse problem.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576721009043</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Artificial neural networks ; Confidence intervals ; Curve fitting ; Data analysis ; Density ; Inverse problems ; Learning algorithms ; Learning theory ; Machine learning ; mixture density networks ; Neural networks ; Parameter estimation ; Probability distribution ; Reflectance ; Statistical analysis ; Statistical methods ; Structural analysis ; X‐ray reflectivity</subject><ispartof>Journal of applied crystallography, 2021-12, Vol.54 (6), p.1572-1579</ispartof><rights>2021 Kim and Lee. published by IUCr Journals.</rights><rights>Copyright Blackwell Publishing Ltd. Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3238-ba686368c6f4cfe39288710ce29ba3a16edd33fa2ce97d7d1ded84ae3ccab973</citedby><cites>FETCH-LOGICAL-c3238-ba686368c6f4cfe39288710ce29ba3a16edd33fa2ce97d7d1ded84ae3ccab973</cites><orcidid>0000-0001-8419-1171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS1600576721009043$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS1600576721009043$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Kook Tae</creatorcontrib><creatorcontrib>Lee, Dong Ryeol</creatorcontrib><title>Probabilistic parameter estimation using a Gaussian mixture density network: application to X‐ray reflectivity data curve fitting</title><title>Journal of applied crystallography</title><description>X‐ray reflectivity (XRR) is widely used for thin‐film structure analysis, and XRR data analysis involves minimizing the difference between experimental data and an XRR curve calculated from model parameters describing the thin‐film structure. This analysis takes a certain amount of time because it involves many unavoidable iterations. However, the recently introduced artificial neural network (ANN) method can dramatically reduce the analysis time in the case of repeated analyses of similar samples. Here, the analysis of XRR data using a mixture density network (MDN) is demonstrated, which enables probabilistic prediction while maintaining the advantages of an ANN. First, under the assumption of a unimodal probability distribution of the output parameter, the trained MDN can estimate the best‐fit parameter and, at the same time, estimate the confidence interval (CI) corresponding to the error bar of the best‐fit parameter. The CI obtained in this manner is similar to that obtained using the Neumann process, a well known statistical method. Next, the MDN method provides several possible solutions for each parameter in the case of a multimodal distribution of the output parameters. An unsupervised machine learning method is used to cluster possible parameter sets in order of probability. Determining the true value by examining the candidates of the parameter sets obtained in this manner can help solve the inherent inverse problem associated with scattering data. A mixture density network (MDN), a neural network method that can make probabilistic predictions, is applied to X‐ray reflectivity data analysis. The probability distribution of several possible parameters obtained using an MDN can help estimate the confidence interval and solve the inverse problem.</description><subject>Artificial neural networks</subject><subject>Confidence intervals</subject><subject>Curve fitting</subject><subject>Data analysis</subject><subject>Density</subject><subject>Inverse problems</subject><subject>Learning algorithms</subject><subject>Learning theory</subject><subject>Machine learning</subject><subject>mixture density networks</subject><subject>Neural networks</subject><subject>Parameter estimation</subject><subject>Probability distribution</subject><subject>Reflectance</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Structural analysis</subject><subject>X‐ray reflectivity</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUMFKw0AQDaJgrX6AtwXP0d1sukm8SdFWKShaxFuYbCayNU3i7qY1N8Ef8Bv9EjfEg-DB08w83nsz8zzvmNFTxmh09sAEpZNIRAGjNKEh3_FGPeT32O6vft87MGZFKXPUYOR93Ok6g0yVylglSQMa1mhRE3TzGqyqK9IaVT0TIDNojVFQkbV6s61GkmNllO1IhXZb65dzAk1TKjmobE2evt4_NXREY1GitGrTk3OwQGSrN0gKZa2zPvT2CigNHv3Usbe8ulxO5_7idnY9vVj4kgc89jMQseAilqIIZYE8CeI4YlRikGTAgQnMc84LCCQmUR7lLMc8DgG5lJAlER97J4Nto-vX1v2XrupWV25jGggqEuYyEo7FBpbUtTHu8rTRLgjdpYymfdTpn6idJhk0W1Vi978gvZneB4_zCQtj_g2qXIY3</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Kim, Kook Tae</creator><creator>Lee, Dong Ryeol</creator><general>International Union of Crystallography</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8419-1171</orcidid></search><sort><creationdate>202112</creationdate><title>Probabilistic parameter estimation using a Gaussian mixture density network: application to X‐ray reflectivity data curve fitting</title><author>Kim, Kook Tae ; Lee, Dong Ryeol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3238-ba686368c6f4cfe39288710ce29ba3a16edd33fa2ce97d7d1ded84ae3ccab973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Confidence intervals</topic><topic>Curve fitting</topic><topic>Data analysis</topic><topic>Density</topic><topic>Inverse problems</topic><topic>Learning algorithms</topic><topic>Learning theory</topic><topic>Machine learning</topic><topic>mixture density networks</topic><topic>Neural networks</topic><topic>Parameter estimation</topic><topic>Probability distribution</topic><topic>Reflectance</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Structural analysis</topic><topic>X‐ray reflectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kook Tae</creatorcontrib><creatorcontrib>Lee, Dong Ryeol</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kook Tae</au><au>Lee, Dong Ryeol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic parameter estimation using a Gaussian mixture density network: application to X‐ray reflectivity data curve fitting</atitle><jtitle>Journal of applied crystallography</jtitle><date>2021-12</date><risdate>2021</risdate><volume>54</volume><issue>6</issue><spage>1572</spage><epage>1579</epage><pages>1572-1579</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>X‐ray reflectivity (XRR) is widely used for thin‐film structure analysis, and XRR data analysis involves minimizing the difference between experimental data and an XRR curve calculated from model parameters describing the thin‐film structure. This analysis takes a certain amount of time because it involves many unavoidable iterations. However, the recently introduced artificial neural network (ANN) method can dramatically reduce the analysis time in the case of repeated analyses of similar samples. Here, the analysis of XRR data using a mixture density network (MDN) is demonstrated, which enables probabilistic prediction while maintaining the advantages of an ANN. First, under the assumption of a unimodal probability distribution of the output parameter, the trained MDN can estimate the best‐fit parameter and, at the same time, estimate the confidence interval (CI) corresponding to the error bar of the best‐fit parameter. The CI obtained in this manner is similar to that obtained using the Neumann process, a well known statistical method. Next, the MDN method provides several possible solutions for each parameter in the case of a multimodal distribution of the output parameters. An unsupervised machine learning method is used to cluster possible parameter sets in order of probability. Determining the true value by examining the candidates of the parameter sets obtained in this manner can help solve the inherent inverse problem associated with scattering data. A mixture density network (MDN), a neural network method that can make probabilistic predictions, is applied to X‐ray reflectivity data analysis. The probability distribution of several possible parameters obtained using an MDN can help estimate the confidence interval and solve the inverse problem.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><doi>10.1107/S1600576721009043</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8419-1171</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1600-5767
ispartof Journal of applied crystallography, 2021-12, Vol.54 (6), p.1572-1579
issn 1600-5767
0021-8898
1600-5767
language eng
recordid cdi_proquest_journals_2606911606
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Artificial neural networks
Confidence intervals
Curve fitting
Data analysis
Density
Inverse problems
Learning algorithms
Learning theory
Machine learning
mixture density networks
Neural networks
Parameter estimation
Probability distribution
Reflectance
Statistical analysis
Statistical methods
Structural analysis
X‐ray reflectivity
title Probabilistic parameter estimation using a Gaussian mixture density network: application to X‐ray reflectivity data curve fitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20parameter%20estimation%20using%20a%20Gaussian%20mixture%20density%20network:%20application%20to%20X%E2%80%90ray%20reflectivity%20data%20curve%20fitting&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Kim,%20Kook%20Tae&rft.date=2021-12&rft.volume=54&rft.issue=6&rft.spage=1572&rft.epage=1579&rft.pages=1572-1579&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576721009043&rft_dat=%3Cproquest_cross%3E2606911606%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606911606&rft_id=info:pmid/&rfr_iscdi=true