Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries
•Zn-substituted Co3O4 microspheres with a rough surface are synthesized.•Zn substitution modifies the lithium storage mechanism of Co3O4 anodes.•The optimized sample exhibits good performance within half and full cells. Substituting Co3O4 submicron spheres with Zn ions modifies the lithium storage m...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2022-01, Vol.890, p.161888, Article 161888 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 161888 |
container_title | Journal of alloys and compounds |
container_volume | 890 |
creator | Qian, Lizhi Yu, Tingli Wei, Zhiqiang Chang, Bingdong Huang, Guoyong Wang, Zhiyuan Liu, Yanguo Sun, Hongyu Bai, Lu Huang, Wei |
description | •Zn-substituted Co3O4 microspheres with a rough surface are synthesized.•Zn substitution modifies the lithium storage mechanism of Co3O4 anodes.•The optimized sample exhibits good performance within half and full cells.
Substituting Co3O4 submicron spheres with Zn ions modifies the lithium storage mechanism, leading to an enhanced electrochemical performance. [Display omitted]
Carbonaceous materials are used as the anode for rechargeable lithium-ion batteries (LIBs), however, lithium dendrites are easily formed during cycling due to the low lithium insertion potential (~0.1 V versus Li+/Li). As alternative anodes, transition metal oxides based on conversion mechanism have attached much attention. But the high lithiation potential (>1.0 V vs. Li+/Li) usually leads to a low output voltage and energy density when used in a full cell configuration. Herein, Zn-substituted Co3O4 submicron spheres are successfully synthesized by a facile solvothermal reaction and subsequent calcination method. When used as the anode for LIB, the optimized sample shows a specific capacity of 686 mAh g−1 at 0.8 A g−1 after 500 cycles, and a specific capacity of 692.9 mAh g−1 at a higher current density of 3.2 A g−1 in a half-cell. Thanks to the controlled Zn substitution, the discharge voltage plateau is 0.16 V lower than that of the pure Co3O4 anode at a current density of 0.4 A g−1. Further investigation of the 0.5Zn-Co3O4//LiCoO2 full cells also displays a high capacity (400.7 mAh g−1 after 200 cycles at 0.4 A g−1) and an excellent rate capability (658.1 mAh g−1 at 1.6 A g−1) compared with the Co3O4//LiCoO2 full cells. This work confirms that substituting suitable metal elements into sub-micron conversion based anodes can reduce the voltage plateau, which is of great significance for the practical applications in high performance energy storage devices. |
doi_str_mv | 10.1016/j.jallcom.2021.161888 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2606201665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838821032977</els_id><sourcerecordid>2606201665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-459b9ab226c2bf3f6296b0014e6776fdcbdd76452e6a7c2a7bea5aa3b4aee8113</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguWs-2rQ9iSx-QWEvevESknTqpnSbmqQr_nuz7N49Dbwz78y8D0K3lKwooeK-X_VqGIzbrRhhdEUFrarqDC1oVfIsF6I-RwtSsyKreFVdoqsQekIIrTldIGjcD_hs74aovgBPg4qgZvw5ZmHWIdo4R2jx2vFNjpOys8a7EYdpCx4CVqNrAXfO48ZmNjW2auiS2uJuHgasVYzgLYRrdNGpIcDNqS7Rx_PT-_o1azYvb-vHJjOclzHLi1rXSjMmDNMd7wSrhU6f5iDKUnSt0W1birxgIFRpmCo1qEIprnMFUFHKl-juuHfy7nuGEGXvZj-mk5IJIliiJYo0VRynUpYQPHRy8nan_K-kRB6Iyl6eiMoDUXkkmnwPRx-kCHsLXgZjYTTQWg8mytbZfzb8AdYGgrk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606201665</pqid></control><display><type>article</type><title>Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qian, Lizhi ; Yu, Tingli ; Wei, Zhiqiang ; Chang, Bingdong ; Huang, Guoyong ; Wang, Zhiyuan ; Liu, Yanguo ; Sun, Hongyu ; Bai, Lu ; Huang, Wei</creator><creatorcontrib>Qian, Lizhi ; Yu, Tingli ; Wei, Zhiqiang ; Chang, Bingdong ; Huang, Guoyong ; Wang, Zhiyuan ; Liu, Yanguo ; Sun, Hongyu ; Bai, Lu ; Huang, Wei</creatorcontrib><description>•Zn-substituted Co3O4 microspheres with a rough surface are synthesized.•Zn substitution modifies the lithium storage mechanism of Co3O4 anodes.•The optimized sample exhibits good performance within half and full cells.
Substituting Co3O4 submicron spheres with Zn ions modifies the lithium storage mechanism, leading to an enhanced electrochemical performance. [Display omitted]
Carbonaceous materials are used as the anode for rechargeable lithium-ion batteries (LIBs), however, lithium dendrites are easily formed during cycling due to the low lithium insertion potential (~0.1 V versus Li+/Li). As alternative anodes, transition metal oxides based on conversion mechanism have attached much attention. But the high lithiation potential (>1.0 V vs. Li+/Li) usually leads to a low output voltage and energy density when used in a full cell configuration. Herein, Zn-substituted Co3O4 submicron spheres are successfully synthesized by a facile solvothermal reaction and subsequent calcination method. When used as the anode for LIB, the optimized sample shows a specific capacity of 686 mAh g−1 at 0.8 A g−1 after 500 cycles, and a specific capacity of 692.9 mAh g−1 at a higher current density of 3.2 A g−1 in a half-cell. Thanks to the controlled Zn substitution, the discharge voltage plateau is 0.16 V lower than that of the pure Co3O4 anode at a current density of 0.4 A g−1. Further investigation of the 0.5Zn-Co3O4//LiCoO2 full cells also displays a high capacity (400.7 mAh g−1 after 200 cycles at 0.4 A g−1) and an excellent rate capability (658.1 mAh g−1 at 1.6 A g−1) compared with the Co3O4//LiCoO2 full cells. This work confirms that substituting suitable metal elements into sub-micron conversion based anodes can reduce the voltage plateau, which is of great significance for the practical applications in high performance energy storage devices.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2021.161888</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anodes ; Carbonaceous materials ; Cobalt oxides ; Conversion ; Conversion-based anodes ; Current density ; Electric potential ; Elemental substitution ; Energy storage ; Flux density ; Lithium ; Lithium compounds ; Lithium storage mechanism ; Lithium-ion batteries ; Low voltage plateau ; Materials substitution ; Rechargeable batteries ; Substitution reactions ; Transition metal oxides ; Voltage ; Zinc plating</subject><ispartof>Journal of alloys and compounds, 2022-01, Vol.890, p.161888, Article 161888</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 22, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-459b9ab226c2bf3f6296b0014e6776fdcbdd76452e6a7c2a7bea5aa3b4aee8113</citedby><cites>FETCH-LOGICAL-c337t-459b9ab226c2bf3f6296b0014e6776fdcbdd76452e6a7c2a7bea5aa3b4aee8113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2021.161888$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Qian, Lizhi</creatorcontrib><creatorcontrib>Yu, Tingli</creatorcontrib><creatorcontrib>Wei, Zhiqiang</creatorcontrib><creatorcontrib>Chang, Bingdong</creatorcontrib><creatorcontrib>Huang, Guoyong</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Liu, Yanguo</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Bai, Lu</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><title>Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries</title><title>Journal of alloys and compounds</title><description>•Zn-substituted Co3O4 microspheres with a rough surface are synthesized.•Zn substitution modifies the lithium storage mechanism of Co3O4 anodes.•The optimized sample exhibits good performance within half and full cells.
Substituting Co3O4 submicron spheres with Zn ions modifies the lithium storage mechanism, leading to an enhanced electrochemical performance. [Display omitted]
Carbonaceous materials are used as the anode for rechargeable lithium-ion batteries (LIBs), however, lithium dendrites are easily formed during cycling due to the low lithium insertion potential (~0.1 V versus Li+/Li). As alternative anodes, transition metal oxides based on conversion mechanism have attached much attention. But the high lithiation potential (>1.0 V vs. Li+/Li) usually leads to a low output voltage and energy density when used in a full cell configuration. Herein, Zn-substituted Co3O4 submicron spheres are successfully synthesized by a facile solvothermal reaction and subsequent calcination method. When used as the anode for LIB, the optimized sample shows a specific capacity of 686 mAh g−1 at 0.8 A g−1 after 500 cycles, and a specific capacity of 692.9 mAh g−1 at a higher current density of 3.2 A g−1 in a half-cell. Thanks to the controlled Zn substitution, the discharge voltage plateau is 0.16 V lower than that of the pure Co3O4 anode at a current density of 0.4 A g−1. Further investigation of the 0.5Zn-Co3O4//LiCoO2 full cells also displays a high capacity (400.7 mAh g−1 after 200 cycles at 0.4 A g−1) and an excellent rate capability (658.1 mAh g−1 at 1.6 A g−1) compared with the Co3O4//LiCoO2 full cells. This work confirms that substituting suitable metal elements into sub-micron conversion based anodes can reduce the voltage plateau, which is of great significance for the practical applications in high performance energy storage devices.</description><subject>Anodes</subject><subject>Carbonaceous materials</subject><subject>Cobalt oxides</subject><subject>Conversion</subject><subject>Conversion-based anodes</subject><subject>Current density</subject><subject>Electric potential</subject><subject>Elemental substitution</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Lithium</subject><subject>Lithium compounds</subject><subject>Lithium storage mechanism</subject><subject>Lithium-ion batteries</subject><subject>Low voltage plateau</subject><subject>Materials substitution</subject><subject>Rechargeable batteries</subject><subject>Substitution reactions</subject><subject>Transition metal oxides</subject><subject>Voltage</subject><subject>Zinc plating</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguWs-2rQ9iSx-QWEvevESknTqpnSbmqQr_nuz7N49Dbwz78y8D0K3lKwooeK-X_VqGIzbrRhhdEUFrarqDC1oVfIsF6I-RwtSsyKreFVdoqsQekIIrTldIGjcD_hs74aovgBPg4qgZvw5ZmHWIdo4R2jx2vFNjpOys8a7EYdpCx4CVqNrAXfO48ZmNjW2auiS2uJuHgasVYzgLYRrdNGpIcDNqS7Rx_PT-_o1azYvb-vHJjOclzHLi1rXSjMmDNMd7wSrhU6f5iDKUnSt0W1birxgIFRpmCo1qEIprnMFUFHKl-juuHfy7nuGEGXvZj-mk5IJIliiJYo0VRynUpYQPHRy8nan_K-kRB6Iyl6eiMoDUXkkmnwPRx-kCHsLXgZjYTTQWg8mytbZfzb8AdYGgrk</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Qian, Lizhi</creator><creator>Yu, Tingli</creator><creator>Wei, Zhiqiang</creator><creator>Chang, Bingdong</creator><creator>Huang, Guoyong</creator><creator>Wang, Zhiyuan</creator><creator>Liu, Yanguo</creator><creator>Sun, Hongyu</creator><creator>Bai, Lu</creator><creator>Huang, Wei</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220115</creationdate><title>Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries</title><author>Qian, Lizhi ; Yu, Tingli ; Wei, Zhiqiang ; Chang, Bingdong ; Huang, Guoyong ; Wang, Zhiyuan ; Liu, Yanguo ; Sun, Hongyu ; Bai, Lu ; Huang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-459b9ab226c2bf3f6296b0014e6776fdcbdd76452e6a7c2a7bea5aa3b4aee8113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Carbonaceous materials</topic><topic>Cobalt oxides</topic><topic>Conversion</topic><topic>Conversion-based anodes</topic><topic>Current density</topic><topic>Electric potential</topic><topic>Elemental substitution</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Lithium</topic><topic>Lithium compounds</topic><topic>Lithium storage mechanism</topic><topic>Lithium-ion batteries</topic><topic>Low voltage plateau</topic><topic>Materials substitution</topic><topic>Rechargeable batteries</topic><topic>Substitution reactions</topic><topic>Transition metal oxides</topic><topic>Voltage</topic><topic>Zinc plating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Lizhi</creatorcontrib><creatorcontrib>Yu, Tingli</creatorcontrib><creatorcontrib>Wei, Zhiqiang</creatorcontrib><creatorcontrib>Chang, Bingdong</creatorcontrib><creatorcontrib>Huang, Guoyong</creatorcontrib><creatorcontrib>Wang, Zhiyuan</creatorcontrib><creatorcontrib>Liu, Yanguo</creatorcontrib><creatorcontrib>Sun, Hongyu</creatorcontrib><creatorcontrib>Bai, Lu</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Lizhi</au><au>Yu, Tingli</au><au>Wei, Zhiqiang</au><au>Chang, Bingdong</au><au>Huang, Guoyong</au><au>Wang, Zhiyuan</au><au>Liu, Yanguo</au><au>Sun, Hongyu</au><au>Bai, Lu</au><au>Huang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>890</volume><spage>161888</spage><pages>161888-</pages><artnum>161888</artnum><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>•Zn-substituted Co3O4 microspheres with a rough surface are synthesized.•Zn substitution modifies the lithium storage mechanism of Co3O4 anodes.•The optimized sample exhibits good performance within half and full cells.
Substituting Co3O4 submicron spheres with Zn ions modifies the lithium storage mechanism, leading to an enhanced electrochemical performance. [Display omitted]
Carbonaceous materials are used as the anode for rechargeable lithium-ion batteries (LIBs), however, lithium dendrites are easily formed during cycling due to the low lithium insertion potential (~0.1 V versus Li+/Li). As alternative anodes, transition metal oxides based on conversion mechanism have attached much attention. But the high lithiation potential (>1.0 V vs. Li+/Li) usually leads to a low output voltage and energy density when used in a full cell configuration. Herein, Zn-substituted Co3O4 submicron spheres are successfully synthesized by a facile solvothermal reaction and subsequent calcination method. When used as the anode for LIB, the optimized sample shows a specific capacity of 686 mAh g−1 at 0.8 A g−1 after 500 cycles, and a specific capacity of 692.9 mAh g−1 at a higher current density of 3.2 A g−1 in a half-cell. Thanks to the controlled Zn substitution, the discharge voltage plateau is 0.16 V lower than that of the pure Co3O4 anode at a current density of 0.4 A g−1. Further investigation of the 0.5Zn-Co3O4//LiCoO2 full cells also displays a high capacity (400.7 mAh g−1 after 200 cycles at 0.4 A g−1) and an excellent rate capability (658.1 mAh g−1 at 1.6 A g−1) compared with the Co3O4//LiCoO2 full cells. This work confirms that substituting suitable metal elements into sub-micron conversion based anodes can reduce the voltage plateau, which is of great significance for the practical applications in high performance energy storage devices.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2021.161888</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2022-01, Vol.890, p.161888, Article 161888 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2606201665 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Anodes Carbonaceous materials Cobalt oxides Conversion Conversion-based anodes Current density Electric potential Elemental substitution Energy storage Flux density Lithium Lithium compounds Lithium storage mechanism Lithium-ion batteries Low voltage plateau Materials substitution Rechargeable batteries Substitution reactions Transition metal oxides Voltage Zinc plating |
title | Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A18%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower-voltage%20plateau%20Zn-substituted%20Co3O4%20submicron%20spheres%20anode%20for%20Li-ion%20half%20and%20full%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Qian,%20Lizhi&rft.date=2022-01-15&rft.volume=890&rft.spage=161888&rft.pages=161888-&rft.artnum=161888&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2021.161888&rft_dat=%3Cproquest_cross%3E2606201665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606201665&rft_id=info:pmid/&rft_els_id=S0925838821032977&rfr_iscdi=true |