Riemann Integral Operator for Stationary and Non-Stationary Processes
Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2021-11, Vol.57 (6), p.918-926 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 926 |
---|---|
container_issue | 6 |
container_start_page | 918 |
container_title | Cybernetics and systems analysis |
container_volume | 57 |
creator | Alexandrovich, I. M. Lyashko, S. I. Sydorov, M. V.-S. Lyashko, N. I. Bondar, O. S. |
description | Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated. |
doi_str_mv | 10.1007/s10559-021-00418-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2606188260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690568189</galeid><sourcerecordid>A690568189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cbc6438a52effe2925561d4640406b45f829fed4e4378663fd1b353a9b9206983</originalsourceid><addsrcrecordid>eNp9kclKBDEQhhtRcH0BTw2ePEQrnaWTo4jLgDjicg6Z7srQMpOMSQbGtzfagnqRECoU31cJ-avqmMIZBWjPEwUhNIGGEgBOFdlsVXtUtIwoxtrtcgYJBJiWu9V-Sq8AwKBVe9XV44BL63098Rnn0S7q6QqjzSHWruynbPMQvI3vtfV9fR88-dV6iKHDlDAdVjvOLhIefdeD6uX66vnyltxNbyaXF3ekY5xl0s06yZmyokHnsNGNEJL2XHLgIGdcONVohz1HzlolJXM9nTHBrJ7pBqRW7KA6GeeuYnhbY8rmNayjL1eaRoKkSpVSqLORmtsFmsG7kKPtyupxOXTBoxtK_0JqEFJRpYtw-kcoTMZNntt1Smby9PiXbUa2iyGliM6s4rAsv2EomM8szJiFKVmYryzMpkhslFKB_Rzjz7v_sT4AXveKpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606188260</pqid></control><display><type>article</type><title>Riemann Integral Operator for Stationary and Non-Stationary Processes</title><source>Springer Nature - Complete Springer Journals</source><creator>Alexandrovich, I. M. ; Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Bondar, O. S.</creator><creatorcontrib>Alexandrovich, I. M. ; Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Bondar, O. S.</creatorcontrib><description>Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-021-00418-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cauchy problems ; Control ; Differential equations ; Elliptic functions ; Helmholtz equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Stationary processes ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2021-11, Vol.57 (6), p.918-926</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-cbc6438a52effe2925561d4640406b45f829fed4e4378663fd1b353a9b9206983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-021-00418-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-021-00418-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Bondar, O. S.</creatorcontrib><title>Riemann Integral Operator for Stationary and Non-Stationary Processes</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.</description><subject>Artificial Intelligence</subject><subject>Cauchy problems</subject><subject>Control</subject><subject>Differential equations</subject><subject>Elliptic functions</subject><subject>Helmholtz equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Stationary processes</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kclKBDEQhhtRcH0BTw2ePEQrnaWTo4jLgDjicg6Z7srQMpOMSQbGtzfagnqRECoU31cJ-avqmMIZBWjPEwUhNIGGEgBOFdlsVXtUtIwoxtrtcgYJBJiWu9V-Sq8AwKBVe9XV44BL63098Rnn0S7q6QqjzSHWruynbPMQvI3vtfV9fR88-dV6iKHDlDAdVjvOLhIefdeD6uX66vnyltxNbyaXF3ekY5xl0s06yZmyokHnsNGNEJL2XHLgIGdcONVohz1HzlolJXM9nTHBrJ7pBqRW7KA6GeeuYnhbY8rmNayjL1eaRoKkSpVSqLORmtsFmsG7kKPtyupxOXTBoxtK_0JqEFJRpYtw-kcoTMZNntt1Smby9PiXbUa2iyGliM6s4rAsv2EomM8szJiFKVmYryzMpkhslFKB_Rzjz7v_sT4AXveKpQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Alexandrovich, I. M.</creator><creator>Lyashko, S. I.</creator><creator>Sydorov, M. V.-S.</creator><creator>Lyashko, N. I.</creator><creator>Bondar, O. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20211101</creationdate><title>Riemann Integral Operator for Stationary and Non-Stationary Processes</title><author>Alexandrovich, I. M. ; Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Bondar, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cbc6438a52effe2925561d4640406b45f829fed4e4378663fd1b353a9b9206983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Cauchy problems</topic><topic>Control</topic><topic>Differential equations</topic><topic>Elliptic functions</topic><topic>Helmholtz equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Stationary processes</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Bondar, O. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandrovich, I. M.</au><au>Lyashko, S. I.</au><au>Sydorov, M. V.-S.</au><au>Lyashko, N. I.</au><au>Bondar, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann Integral Operator for Stationary and Non-Stationary Processes</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>57</volume><issue>6</issue><spage>918</spage><epage>926</epage><pages>918-926</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-021-00418-x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1060-0396 |
ispartof | Cybernetics and systems analysis, 2021-11, Vol.57 (6), p.918-926 |
issn | 1060-0396 1573-8337 |
language | eng |
recordid | cdi_proquest_journals_2606188260 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial Intelligence Cauchy problems Control Differential equations Elliptic functions Helmholtz equations Mathematical analysis Mathematics Mathematics and Statistics Operators (mathematics) Processor Architectures Software Engineering/Programming and Operating Systems Stationary processes Systems Theory |
title | Riemann Integral Operator for Stationary and Non-Stationary Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%20Integral%20Operator%20for%20Stationary%20and%20Non-Stationary%20Processes&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Alexandrovich,%20I.%20M.&rft.date=2021-11-01&rft.volume=57&rft.issue=6&rft.spage=918&rft.epage=926&rft.pages=918-926&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-021-00418-x&rft_dat=%3Cgale_proqu%3EA690568189%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606188260&rft_id=info:pmid/&rft_galeid=A690568189&rfr_iscdi=true |