Riemann Integral Operator for Stationary and Non-Stationary Processes

Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2021-11, Vol.57 (6), p.918-926
Hauptverfasser: Alexandrovich, I. M., Lyashko, S. I., Sydorov, M. V.-S., Lyashko, N. I., Bondar, O. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 926
container_issue 6
container_start_page 918
container_title Cybernetics and systems analysis
container_volume 57
creator Alexandrovich, I. M.
Lyashko, S. I.
Sydorov, M. V.-S.
Lyashko, N. I.
Bondar, O. S.
description Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.
doi_str_mv 10.1007/s10559-021-00418-x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2606188260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A690568189</galeid><sourcerecordid>A690568189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cbc6438a52effe2925561d4640406b45f829fed4e4378663fd1b353a9b9206983</originalsourceid><addsrcrecordid>eNp9kclKBDEQhhtRcH0BTw2ePEQrnaWTo4jLgDjicg6Z7srQMpOMSQbGtzfagnqRECoU31cJ-avqmMIZBWjPEwUhNIGGEgBOFdlsVXtUtIwoxtrtcgYJBJiWu9V-Sq8AwKBVe9XV44BL63098Rnn0S7q6QqjzSHWruynbPMQvI3vtfV9fR88-dV6iKHDlDAdVjvOLhIefdeD6uX66vnyltxNbyaXF3ekY5xl0s06yZmyokHnsNGNEJL2XHLgIGdcONVohz1HzlolJXM9nTHBrJ7pBqRW7KA6GeeuYnhbY8rmNayjL1eaRoKkSpVSqLORmtsFmsG7kKPtyupxOXTBoxtK_0JqEFJRpYtw-kcoTMZNntt1Smby9PiXbUa2iyGliM6s4rAsv2EomM8szJiFKVmYryzMpkhslFKB_Rzjz7v_sT4AXveKpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606188260</pqid></control><display><type>article</type><title>Riemann Integral Operator for Stationary and Non-Stationary Processes</title><source>Springer Nature - Complete Springer Journals</source><creator>Alexandrovich, I. M. ; Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Bondar, O. S.</creator><creatorcontrib>Alexandrovich, I. M. ; Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Bondar, O. S.</creatorcontrib><description>Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.</description><identifier>ISSN: 1060-0396</identifier><identifier>EISSN: 1573-8337</identifier><identifier>DOI: 10.1007/s10559-021-00418-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Cauchy problems ; Control ; Differential equations ; Elliptic functions ; Helmholtz equations ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Processor Architectures ; Software Engineering/Programming and Operating Systems ; Stationary processes ; Systems Theory</subject><ispartof>Cybernetics and systems analysis, 2021-11, Vol.57 (6), p.918-926</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c343t-cbc6438a52effe2925561d4640406b45f829fed4e4378663fd1b353a9b9206983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10559-021-00418-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10559-021-00418-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Bondar, O. S.</creatorcontrib><title>Riemann Integral Operator for Stationary and Non-Stationary Processes</title><title>Cybernetics and systems analysis</title><addtitle>Cybern Syst Anal</addtitle><description>Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.</description><subject>Artificial Intelligence</subject><subject>Cauchy problems</subject><subject>Control</subject><subject>Differential equations</subject><subject>Elliptic functions</subject><subject>Helmholtz equations</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Processor Architectures</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Stationary processes</subject><subject>Systems Theory</subject><issn>1060-0396</issn><issn>1573-8337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kclKBDEQhhtRcH0BTw2ePEQrnaWTo4jLgDjicg6Z7srQMpOMSQbGtzfagnqRECoU31cJ-avqmMIZBWjPEwUhNIGGEgBOFdlsVXtUtIwoxtrtcgYJBJiWu9V-Sq8AwKBVe9XV44BL63098Rnn0S7q6QqjzSHWruynbPMQvI3vtfV9fR88-dV6iKHDlDAdVjvOLhIefdeD6uX66vnyltxNbyaXF3ekY5xl0s06yZmyokHnsNGNEJL2XHLgIGdcONVohz1HzlolJXM9nTHBrJ7pBqRW7KA6GeeuYnhbY8rmNayjL1eaRoKkSpVSqLORmtsFmsG7kKPtyupxOXTBoxtK_0JqEFJRpYtw-kcoTMZNntt1Smby9PiXbUa2iyGliM6s4rAsv2EomM8szJiFKVmYryzMpkhslFKB_Rzjz7v_sT4AXveKpQ</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Alexandrovich, I. M.</creator><creator>Lyashko, S. I.</creator><creator>Sydorov, M. V.-S.</creator><creator>Lyashko, N. I.</creator><creator>Bondar, O. S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>JQ2</scope></search><sort><creationdate>20211101</creationdate><title>Riemann Integral Operator for Stationary and Non-Stationary Processes</title><author>Alexandrovich, I. M. ; Lyashko, S. I. ; Sydorov, M. V.-S. ; Lyashko, N. I. ; Bondar, O. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cbc6438a52effe2925561d4640406b45f829fed4e4378663fd1b353a9b9206983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Cauchy problems</topic><topic>Control</topic><topic>Differential equations</topic><topic>Elliptic functions</topic><topic>Helmholtz equations</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Processor Architectures</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Stationary processes</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandrovich, I. M.</creatorcontrib><creatorcontrib>Lyashko, S. I.</creatorcontrib><creatorcontrib>Sydorov, M. V.-S.</creatorcontrib><creatorcontrib>Lyashko, N. I.</creatorcontrib><creatorcontrib>Bondar, O. S.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Cybernetics and systems analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandrovich, I. M.</au><au>Lyashko, S. I.</au><au>Sydorov, M. V.-S.</au><au>Lyashko, N. I.</au><au>Bondar, O. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riemann Integral Operator for Stationary and Non-Stationary Processes</atitle><jtitle>Cybernetics and systems analysis</jtitle><stitle>Cybern Syst Anal</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>57</volume><issue>6</issue><spage>918</spage><epage>926</epage><pages>918-926</pages><issn>1060-0396</issn><eissn>1573-8337</eissn><abstract>Integral operators based on the Riemann function, which transform arbitrary analytical functions into regular solutions of equations of elliptic, parabolic, and hyperbolic types of second order, are constructed. The Riemann operator method is generalized for the biaxisymmetric Helmholtz equation. A method for finding solutions to the above equations in analytical form is developed. In some cases, formulas for inverting integral representations of solutions are constructed. The conditions for solving the Cauchy problem for the axisymmetric Helmholtz equation are formulated.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10559-021-00418-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1060-0396
ispartof Cybernetics and systems analysis, 2021-11, Vol.57 (6), p.918-926
issn 1060-0396
1573-8337
language eng
recordid cdi_proquest_journals_2606188260
source Springer Nature - Complete Springer Journals
subjects Artificial Intelligence
Cauchy problems
Control
Differential equations
Elliptic functions
Helmholtz equations
Mathematical analysis
Mathematics
Mathematics and Statistics
Operators (mathematics)
Processor Architectures
Software Engineering/Programming and Operating Systems
Stationary processes
Systems Theory
title Riemann Integral Operator for Stationary and Non-Stationary Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riemann%20Integral%20Operator%20for%20Stationary%20and%20Non-Stationary%20Processes&rft.jtitle=Cybernetics%20and%20systems%20analysis&rft.au=Alexandrovich,%20I.%20M.&rft.date=2021-11-01&rft.volume=57&rft.issue=6&rft.spage=918&rft.epage=926&rft.pages=918-926&rft.issn=1060-0396&rft.eissn=1573-8337&rft_id=info:doi/10.1007/s10559-021-00418-x&rft_dat=%3Cgale_proqu%3EA690568189%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606188260&rft_id=info:pmid/&rft_galeid=A690568189&rfr_iscdi=true