Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities
Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive c...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2021-11, Vol.235 (22), p.6435-6450 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6450 |
---|---|
container_issue | 22 |
container_start_page | 6435 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 235 |
creator | Zhan, Bowen Jin, Minghe Yang, Guocai Huang, Bincheng |
description | Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme. |
doi_str_mv | 10.1177/0954406221993839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2606095763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406221993839</sage_id><sourcerecordid>2606095763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwGvruZjN7s5SrEqFLzoeZkmsza1m9QkVdq_3i0VBMG5zMD7vTfwCLnk7Ibzur5luipLpoTgWstG6iMyEqzkhdCNPCajvVzs9VNyltKSDSNUNSK7qfMuY5FdjxQsrLP7RGqCzzGsaBcizQukdgOrAmJP0xoM0hjmISf65fKCbrzBmMF5-u489pCdSdfUbj30w0XBW2oR7C54pD741QBBdNlhOicnHawSXvzsMXmd3r9MHovZ88PT5G5WGMl0LspaWgBRaaXmVjPWKFk2gluluznnwiqBwtSAHejKmMqKElRdoeywEVXJpByTq0PuOoaPDabcLsMm-uFlKxRTQzO12lPsQJkYUorYtevoeojblrN233D7t-HBUhwsCd7wN_Rf_hvfUXxv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606095763</pqid></control><display><type>article</type><title>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</title><source>SAGE Complete</source><creator>Zhan, Bowen ; Jin, Minghe ; Yang, Guocai ; Huang, Bincheng</creator><creatorcontrib>Zhan, Bowen ; Jin, Minghe ; Yang, Guocai ; Huang, Bincheng</creatorcontrib><description>Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406221993839</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive control ; Control stability ; Feature decomposition ; Jacobi matrix method ; Jacobian matrix ; Kinematics ; Liapunov functions ; Mechanical systems ; Neural networks ; Nonlinearity ; Orbital servicing ; Parameter estimation ; Radial basis function ; Robots ; Space robots ; Tracking errors ; Uncertainty</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2021-11, Vol.235 (22), p.6435-6450</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</citedby><cites>FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</cites><orcidid>0000-0001-6194-0723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406221993839$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406221993839$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Zhan, Bowen</creatorcontrib><creatorcontrib>Jin, Minghe</creatorcontrib><creatorcontrib>Yang, Guocai</creatorcontrib><creatorcontrib>Huang, Bincheng</creatorcontrib><title>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.</description><subject>Adaptive control</subject><subject>Control stability</subject><subject>Feature decomposition</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Kinematics</subject><subject>Liapunov functions</subject><subject>Mechanical systems</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Orbital servicing</subject><subject>Parameter estimation</subject><subject>Radial basis function</subject><subject>Robots</subject><subject>Space robots</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwGvruZjN7s5SrEqFLzoeZkmsza1m9QkVdq_3i0VBMG5zMD7vTfwCLnk7Ibzur5luipLpoTgWstG6iMyEqzkhdCNPCajvVzs9VNyltKSDSNUNSK7qfMuY5FdjxQsrLP7RGqCzzGsaBcizQukdgOrAmJP0xoM0hjmISf65fKCbrzBmMF5-u489pCdSdfUbj30w0XBW2oR7C54pD741QBBdNlhOicnHawSXvzsMXmd3r9MHovZ88PT5G5WGMl0LspaWgBRaaXmVjPWKFk2gluluznnwiqBwtSAHejKmMqKElRdoeywEVXJpByTq0PuOoaPDabcLsMm-uFlKxRTQzO12lPsQJkYUorYtevoeojblrN233D7t-HBUhwsCd7wN_Rf_hvfUXxv</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhan, Bowen</creator><creator>Jin, Minghe</creator><creator>Yang, Guocai</creator><creator>Huang, Bincheng</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-6194-0723</orcidid></search><sort><creationdate>202111</creationdate><title>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</title><author>Zhan, Bowen ; Jin, Minghe ; Yang, Guocai ; Huang, Bincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Control stability</topic><topic>Feature decomposition</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Kinematics</topic><topic>Liapunov functions</topic><topic>Mechanical systems</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Orbital servicing</topic><topic>Parameter estimation</topic><topic>Radial basis function</topic><topic>Robots</topic><topic>Space robots</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Bowen</creatorcontrib><creatorcontrib>Jin, Minghe</creatorcontrib><creatorcontrib>Yang, Guocai</creatorcontrib><creatorcontrib>Huang, Bincheng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Bowen</au><au>Jin, Minghe</au><au>Yang, Guocai</au><au>Huang, Bincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2021-11</date><risdate>2021</risdate><volume>235</volume><issue>22</issue><spage>6435</spage><epage>6450</epage><pages>6435-6450</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406221993839</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6194-0723</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2021-11, Vol.235 (22), p.6435-6450 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_journals_2606095763 |
source | SAGE Complete |
subjects | Adaptive control Control stability Feature decomposition Jacobi matrix method Jacobian matrix Kinematics Liapunov functions Mechanical systems Neural networks Nonlinearity Orbital servicing Parameter estimation Radial basis function Robots Space robots Tracking errors Uncertainty |
title | Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-time%20adaptive%20control%20for%20the%20dual-arm%20space%20robots%20with%20uncertain%20kinematics,%20dynamics%20and%20deadzone%20nonlinearities&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Zhan,%20Bowen&rft.date=2021-11&rft.volume=235&rft.issue=22&rft.spage=6435&rft.epage=6450&rft.pages=6435-6450&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406221993839&rft_dat=%3Cproquest_cross%3E2606095763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606095763&rft_id=info:pmid/&rft_sage_id=10.1177_0954406221993839&rfr_iscdi=true |