Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities

Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2021-11, Vol.235 (22), p.6435-6450
Hauptverfasser: Zhan, Bowen, Jin, Minghe, Yang, Guocai, Huang, Bincheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6450
container_issue 22
container_start_page 6435
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 235
creator Zhan, Bowen
Jin, Minghe
Yang, Guocai
Huang, Bincheng
description Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.
doi_str_mv 10.1177/0954406221993839
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2606095763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954406221993839</sage_id><sourcerecordid>2606095763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt3jwGvruZjN7s5SrEqFLzoeZkmsza1m9QkVdq_3i0VBMG5zMD7vTfwCLnk7Ibzur5luipLpoTgWstG6iMyEqzkhdCNPCajvVzs9VNyltKSDSNUNSK7qfMuY5FdjxQsrLP7RGqCzzGsaBcizQukdgOrAmJP0xoM0hjmISf65fKCbrzBmMF5-u489pCdSdfUbj30w0XBW2oR7C54pD741QBBdNlhOicnHawSXvzsMXmd3r9MHovZ88PT5G5WGMl0LspaWgBRaaXmVjPWKFk2gluluznnwiqBwtSAHejKmMqKElRdoeywEVXJpByTq0PuOoaPDabcLsMm-uFlKxRTQzO12lPsQJkYUorYtevoeojblrN233D7t-HBUhwsCd7wN_Rf_hvfUXxv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2606095763</pqid></control><display><type>article</type><title>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</title><source>SAGE Complete</source><creator>Zhan, Bowen ; Jin, Minghe ; Yang, Guocai ; Huang, Bincheng</creator><creatorcontrib>Zhan, Bowen ; Jin, Minghe ; Yang, Guocai ; Huang, Bincheng</creatorcontrib><description>Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/0954406221993839</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive control ; Control stability ; Feature decomposition ; Jacobi matrix method ; Jacobian matrix ; Kinematics ; Liapunov functions ; Mechanical systems ; Neural networks ; Nonlinearity ; Orbital servicing ; Parameter estimation ; Radial basis function ; Robots ; Space robots ; Tracking errors ; Uncertainty</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2021-11, Vol.235 (22), p.6435-6450</ispartof><rights>IMechE 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</citedby><cites>FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</cites><orcidid>0000-0001-6194-0723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954406221993839$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954406221993839$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Zhan, Bowen</creatorcontrib><creatorcontrib>Jin, Minghe</creatorcontrib><creatorcontrib>Yang, Guocai</creatorcontrib><creatorcontrib>Huang, Bincheng</creatorcontrib><title>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.</description><subject>Adaptive control</subject><subject>Control stability</subject><subject>Feature decomposition</subject><subject>Jacobi matrix method</subject><subject>Jacobian matrix</subject><subject>Kinematics</subject><subject>Liapunov functions</subject><subject>Mechanical systems</subject><subject>Neural networks</subject><subject>Nonlinearity</subject><subject>Orbital servicing</subject><subject>Parameter estimation</subject><subject>Radial basis function</subject><subject>Robots</subject><subject>Space robots</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt3jwGvruZjN7s5SrEqFLzoeZkmsza1m9QkVdq_3i0VBMG5zMD7vTfwCLnk7Ibzur5luipLpoTgWstG6iMyEqzkhdCNPCajvVzs9VNyltKSDSNUNSK7qfMuY5FdjxQsrLP7RGqCzzGsaBcizQukdgOrAmJP0xoM0hjmISf65fKCbrzBmMF5-u489pCdSdfUbj30w0XBW2oR7C54pD741QBBdNlhOicnHawSXvzsMXmd3r9MHovZ88PT5G5WGMl0LspaWgBRaaXmVjPWKFk2gluluznnwiqBwtSAHejKmMqKElRdoeywEVXJpByTq0PuOoaPDabcLsMm-uFlKxRTQzO12lPsQJkYUorYtevoeojblrN233D7t-HBUhwsCd7wN_Rf_hvfUXxv</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Zhan, Bowen</creator><creator>Jin, Minghe</creator><creator>Yang, Guocai</creator><creator>Huang, Bincheng</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-6194-0723</orcidid></search><sort><creationdate>202111</creationdate><title>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</title><author>Zhan, Bowen ; Jin, Minghe ; Yang, Guocai ; Huang, Bincheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-473daa25966bd9008634821d69fb112d62e2c7aefa95cc5d24a675e3fe8254033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Control stability</topic><topic>Feature decomposition</topic><topic>Jacobi matrix method</topic><topic>Jacobian matrix</topic><topic>Kinematics</topic><topic>Liapunov functions</topic><topic>Mechanical systems</topic><topic>Neural networks</topic><topic>Nonlinearity</topic><topic>Orbital servicing</topic><topic>Parameter estimation</topic><topic>Radial basis function</topic><topic>Robots</topic><topic>Space robots</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Bowen</creatorcontrib><creatorcontrib>Jin, Minghe</creatorcontrib><creatorcontrib>Yang, Guocai</creatorcontrib><creatorcontrib>Huang, Bincheng</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Bowen</au><au>Jin, Minghe</au><au>Yang, Guocai</au><au>Huang, Bincheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2021-11</date><risdate>2021</risdate><volume>235</volume><issue>22</issue><spage>6435</spage><epage>6450</epage><pages>6435-6450</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Dual-arm space robots are capable of load transporting and coordinated manipulation for on-orbit servicing. However, achieving the accurate trajectory tracking performance is a big challenge for dual-arm robots, especially when mechanical system uncertainties exist. This paper proposes an adaptive control scheme for the dual-arm space robots with grasped targets to accurately follow trajectories while stabilizing base’s attitude in the presence of dynamic uncertainties, kinematic uncertainties and deadzone nonlinearities. An approximate Jacobian matrix is utilized to compensate the kinematic uncertainties, while a radial basis function neural network (RBFNN) with feature decomposition technique is employed to approximate the unknown dynamics. Besides, a smooth deadzone inverse is introduced to reduce the effects from deadzone nonlinearities. The adaption laws for the parameters of the approximate Jacobian matrix, RBFNN and the deadzone inverse are designed with the consideration of the finite-time convergence of trajectory tracking errors as well as the parameters estimation. The stability of the control scheme is validated by a defined Lyapunov function. Several simulations were conducted, and the simulation results verified the effectiveness of the proposed control scheme.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954406221993839</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6194-0723</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2021-11, Vol.235 (22), p.6435-6450
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2606095763
source SAGE Complete
subjects Adaptive control
Control stability
Feature decomposition
Jacobi matrix method
Jacobian matrix
Kinematics
Liapunov functions
Mechanical systems
Neural networks
Nonlinearity
Orbital servicing
Parameter estimation
Radial basis function
Robots
Space robots
Tracking errors
Uncertainty
title Finite-time adaptive control for the dual-arm space robots with uncertain kinematics, dynamics and deadzone nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A14%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-time%20adaptive%20control%20for%20the%20dual-arm%20space%20robots%20with%20uncertain%20kinematics,%20dynamics%20and%20deadzone%20nonlinearities&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Zhan,%20Bowen&rft.date=2021-11&rft.volume=235&rft.issue=22&rft.spage=6435&rft.epage=6450&rft.pages=6435-6450&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/0954406221993839&rft_dat=%3Cproquest_cross%3E2606095763%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2606095763&rft_id=info:pmid/&rft_sage_id=10.1177_0954406221993839&rfr_iscdi=true