Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks
Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their ta...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2021-12, Vol.37 (6), p.2193-2209 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2209 |
---|---|
container_issue | 6 |
container_start_page | 2193 |
container_title | IEEE transactions on robotics |
container_volume | 37 |
creator | Lanotte, Francesco McKinney, Zach Grazi, Lorenzo Chen, Baojun Crea, Simona Vitiello, Nicola |
description | Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor. |
doi_str_mv | 10.1109/TRO.2021.3073836 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2605708617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9431370</ieee_id><sourcerecordid>2605708617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEEqVwR-JiiSPKMrbj2OG2SqFF2qpS2cIxcpwxddm1F9tbtDwGT4yXVHDlMp7D__0jfa6qlxQWlEL3dn19tWDA6IKD5Iq3j6oT2jW0hqZVj8suBKs5dOpp9SylOwDWdMBPql_LSe-yu0fSB59j2JBLzLdhIjZEcnbweusM-XTw5jYG737q7IInwZIvqKMeN0iuwxhyySxTcilrb5DkQM5cMhEzkstwj1v0Ob0jn_XGTXPBsfwmlZu6jNK2cjY7_5WsdfqWnldPrN4kfPHwnlY3H96v-4t6dXX-sV-uasM5z_VkrBVKjEqrpjFsatHIbtRTZxo7ghyFZl0npKbaUGba0UxGytaYRisUUjF-Wr2ee3cxfN9jysNd2EdfTg6sBSFBtVSWFMwpE0NKEe2wi26r42GgMBzND8X8cDQ_PJgvyJsZ-YFjsMk4LFb-YgAgmVBQ_JdfECWt_j_du_zHYB_2Phf01Yw6xH9I13DKJfDffe2i1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605708617</pqid></control><display><type>article</type><title>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</title><source>IEEE Electronic Library (IEL)</source><creator>Lanotte, Francesco ; McKinney, Zach ; Grazi, Lorenzo ; Chen, Baojun ; Crea, Simona ; Vitiello, Nicola</creator><creatorcontrib>Lanotte, Francesco ; McKinney, Zach ; Grazi, Lorenzo ; Chen, Baojun ; Crea, Simona ; Vitiello, Nicola</creatorcontrib><description>Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2021.3073836</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptive control ; Biomechanics ; Control methods ; Dynamic control ; Electromyography ; Exoskeletons ; Hoisting ; Joints (anatomy) ; Kinematics ; Muscles ; Physical work ; Real-time systems ; Rehabilitation ; Robot control ; Robotics ; Science & Technology ; Synchronism ; Technology ; Trajectory analysis ; wearable robotics ; Wearable robots ; Wearable technology</subject><ispartof>IEEE transactions on robotics, 2021-12, Vol.37 (6), p.2193-2209</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000725804900025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</citedby><cites>FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</cites><orcidid>0000-0002-2840-7617 ; 0000-0001-9833-4401 ; 0000-0003-4899-9346 ; 0000-0001-8978-1074 ; 0000-0001-7336-9050 ; 0000-0001-8636-7716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9431370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9431370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lanotte, Francesco</creatorcontrib><creatorcontrib>McKinney, Zach</creatorcontrib><creatorcontrib>Grazi, Lorenzo</creatorcontrib><creatorcontrib>Chen, Baojun</creatorcontrib><creatorcontrib>Crea, Simona</creatorcontrib><creatorcontrib>Vitiello, Nicola</creatorcontrib><title>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><addtitle>IEEE T ROBOT</addtitle><description>Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor.</description><subject>Adaptive control</subject><subject>Biomechanics</subject><subject>Control methods</subject><subject>Dynamic control</subject><subject>Electromyography</subject><subject>Exoskeletons</subject><subject>Hoisting</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Muscles</subject><subject>Physical work</subject><subject>Real-time systems</subject><subject>Rehabilitation</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Science & Technology</subject><subject>Synchronism</subject><subject>Technology</subject><subject>Trajectory analysis</subject><subject>wearable robotics</subject><subject>Wearable robots</subject><subject>Wearable technology</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkcFu1DAQhiMEEqVwR-JiiSPKMrbj2OG2SqFF2qpS2cIxcpwxddm1F9tbtDwGT4yXVHDlMp7D__0jfa6qlxQWlEL3dn19tWDA6IKD5Iq3j6oT2jW0hqZVj8suBKs5dOpp9SylOwDWdMBPql_LSe-yu0fSB59j2JBLzLdhIjZEcnbweusM-XTw5jYG737q7IInwZIvqKMeN0iuwxhyySxTcilrb5DkQM5cMhEzkstwj1v0Ob0jn_XGTXPBsfwmlZu6jNK2cjY7_5WsdfqWnldPrN4kfPHwnlY3H96v-4t6dXX-sV-uasM5z_VkrBVKjEqrpjFsatHIbtRTZxo7ghyFZl0npKbaUGba0UxGytaYRisUUjF-Wr2ee3cxfN9jysNd2EdfTg6sBSFBtVSWFMwpE0NKEe2wi26r42GgMBzND8X8cDQ_PJgvyJsZ-YFjsMk4LFb-YgAgmVBQ_JdfECWt_j_du_zHYB_2Phf01Yw6xH9I13DKJfDffe2i1A</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Lanotte, Francesco</creator><creator>McKinney, Zach</creator><creator>Grazi, Lorenzo</creator><creator>Chen, Baojun</creator><creator>Crea, Simona</creator><creator>Vitiello, Nicola</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2840-7617</orcidid><orcidid>https://orcid.org/0000-0001-9833-4401</orcidid><orcidid>https://orcid.org/0000-0003-4899-9346</orcidid><orcidid>https://orcid.org/0000-0001-8978-1074</orcidid><orcidid>https://orcid.org/0000-0001-7336-9050</orcidid><orcidid>https://orcid.org/0000-0001-8636-7716</orcidid></search><sort><creationdate>202112</creationdate><title>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</title><author>Lanotte, Francesco ; McKinney, Zach ; Grazi, Lorenzo ; Chen, Baojun ; Crea, Simona ; Vitiello, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Biomechanics</topic><topic>Control methods</topic><topic>Dynamic control</topic><topic>Electromyography</topic><topic>Exoskeletons</topic><topic>Hoisting</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Muscles</topic><topic>Physical work</topic><topic>Real-time systems</topic><topic>Rehabilitation</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Science & Technology</topic><topic>Synchronism</topic><topic>Technology</topic><topic>Trajectory analysis</topic><topic>wearable robotics</topic><topic>Wearable robots</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanotte, Francesco</creatorcontrib><creatorcontrib>McKinney, Zach</creatorcontrib><creatorcontrib>Grazi, Lorenzo</creatorcontrib><creatorcontrib>Chen, Baojun</creatorcontrib><creatorcontrib>Crea, Simona</creatorcontrib><creatorcontrib>Vitiello, Nicola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lanotte, Francesco</au><au>McKinney, Zach</au><au>Grazi, Lorenzo</au><au>Chen, Baojun</au><au>Crea, Simona</au><au>Vitiello, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><stitle>IEEE T ROBOT</stitle><date>2021-12</date><risdate>2021</risdate><volume>37</volume><issue>6</issue><spage>2193</spage><epage>2209</epage><pages>2193-2209</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TRO.2021.3073836</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2840-7617</orcidid><orcidid>https://orcid.org/0000-0001-9833-4401</orcidid><orcidid>https://orcid.org/0000-0003-4899-9346</orcidid><orcidid>https://orcid.org/0000-0001-8978-1074</orcidid><orcidid>https://orcid.org/0000-0001-7336-9050</orcidid><orcidid>https://orcid.org/0000-0001-8636-7716</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2021-12, Vol.37 (6), p.2193-2209 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2605708617 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Biomechanics Control methods Dynamic control Electromyography Exoskeletons Hoisting Joints (anatomy) Kinematics Muscles Physical work Real-time systems Rehabilitation Robot control Robotics Science & Technology Synchronism Technology Trajectory analysis wearable robotics Wearable robots Wearable technology |
title | Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Control%20Method%20for%20Dynamic%20Synchronization%20of%20Wearable%20Robotic%20Assistance%20to%20Discrete%20Movements:%20Validation%20for%20Use%20Case%20of%20Lifting%20Tasks&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Lanotte,%20Francesco&rft.date=2021-12&rft.volume=37&rft.issue=6&rft.spage=2193&rft.epage=2209&rft.pages=2193-2209&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2021.3073836&rft_dat=%3Cproquest_RIE%3E2605708617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605708617&rft_id=info:pmid/&rft_ieee_id=9431370&rfr_iscdi=true |