Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks

Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2021-12, Vol.37 (6), p.2193-2209
Hauptverfasser: Lanotte, Francesco, McKinney, Zach, Grazi, Lorenzo, Chen, Baojun, Crea, Simona, Vitiello, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2209
container_issue 6
container_start_page 2193
container_title IEEE transactions on robotics
container_volume 37
creator Lanotte, Francesco
McKinney, Zach
Grazi, Lorenzo
Chen, Baojun
Crea, Simona
Vitiello, Nicola
description Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor.
doi_str_mv 10.1109/TRO.2021.3073836
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2605708617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9431370</ieee_id><sourcerecordid>2605708617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</originalsourceid><addsrcrecordid>eNqNkcFu1DAQhiMEEqVwR-JiiSPKMrbj2OG2SqFF2qpS2cIxcpwxddm1F9tbtDwGT4yXVHDlMp7D__0jfa6qlxQWlEL3dn19tWDA6IKD5Iq3j6oT2jW0hqZVj8suBKs5dOpp9SylOwDWdMBPql_LSe-yu0fSB59j2JBLzLdhIjZEcnbweusM-XTw5jYG737q7IInwZIvqKMeN0iuwxhyySxTcilrb5DkQM5cMhEzkstwj1v0Ob0jn_XGTXPBsfwmlZu6jNK2cjY7_5WsdfqWnldPrN4kfPHwnlY3H96v-4t6dXX-sV-uasM5z_VkrBVKjEqrpjFsatHIbtRTZxo7ghyFZl0npKbaUGba0UxGytaYRisUUjF-Wr2ee3cxfN9jysNd2EdfTg6sBSFBtVSWFMwpE0NKEe2wi26r42GgMBzND8X8cDQ_PJgvyJsZ-YFjsMk4LFb-YgAgmVBQ_JdfECWt_j_du_zHYB_2Phf01Yw6xH9I13DKJfDffe2i1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605708617</pqid></control><display><type>article</type><title>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</title><source>IEEE Electronic Library (IEL)</source><creator>Lanotte, Francesco ; McKinney, Zach ; Grazi, Lorenzo ; Chen, Baojun ; Crea, Simona ; Vitiello, Nicola</creator><creatorcontrib>Lanotte, Francesco ; McKinney, Zach ; Grazi, Lorenzo ; Chen, Baojun ; Crea, Simona ; Vitiello, Nicola</creatorcontrib><description>Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2021.3073836</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Adaptive control ; Biomechanics ; Control methods ; Dynamic control ; Electromyography ; Exoskeletons ; Hoisting ; Joints (anatomy) ; Kinematics ; Muscles ; Physical work ; Real-time systems ; Rehabilitation ; Robot control ; Robotics ; Science &amp; Technology ; Synchronism ; Technology ; Trajectory analysis ; wearable robotics ; Wearable robots ; Wearable technology</subject><ispartof>IEEE transactions on robotics, 2021-12, Vol.37 (6), p.2193-2209</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000725804900025</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</citedby><cites>FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</cites><orcidid>0000-0002-2840-7617 ; 0000-0001-9833-4401 ; 0000-0003-4899-9346 ; 0000-0001-8978-1074 ; 0000-0001-7336-9050 ; 0000-0001-8636-7716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9431370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9431370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lanotte, Francesco</creatorcontrib><creatorcontrib>McKinney, Zach</creatorcontrib><creatorcontrib>Grazi, Lorenzo</creatorcontrib><creatorcontrib>Chen, Baojun</creatorcontrib><creatorcontrib>Crea, Simona</creatorcontrib><creatorcontrib>Vitiello, Nicola</creatorcontrib><title>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><addtitle>IEEE T ROBOT</addtitle><description>Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor.</description><subject>Adaptive control</subject><subject>Biomechanics</subject><subject>Control methods</subject><subject>Dynamic control</subject><subject>Electromyography</subject><subject>Exoskeletons</subject><subject>Hoisting</subject><subject>Joints (anatomy)</subject><subject>Kinematics</subject><subject>Muscles</subject><subject>Physical work</subject><subject>Real-time systems</subject><subject>Rehabilitation</subject><subject>Robot control</subject><subject>Robotics</subject><subject>Science &amp; Technology</subject><subject>Synchronism</subject><subject>Technology</subject><subject>Trajectory analysis</subject><subject>wearable robotics</subject><subject>Wearable robots</subject><subject>Wearable technology</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkcFu1DAQhiMEEqVwR-JiiSPKMrbj2OG2SqFF2qpS2cIxcpwxddm1F9tbtDwGT4yXVHDlMp7D__0jfa6qlxQWlEL3dn19tWDA6IKD5Iq3j6oT2jW0hqZVj8suBKs5dOpp9SylOwDWdMBPql_LSe-yu0fSB59j2JBLzLdhIjZEcnbweusM-XTw5jYG737q7IInwZIvqKMeN0iuwxhyySxTcilrb5DkQM5cMhEzkstwj1v0Ob0jn_XGTXPBsfwmlZu6jNK2cjY7_5WsdfqWnldPrN4kfPHwnlY3H96v-4t6dXX-sV-uasM5z_VkrBVKjEqrpjFsatHIbtRTZxo7ghyFZl0npKbaUGba0UxGytaYRisUUjF-Wr2ee3cxfN9jysNd2EdfTg6sBSFBtVSWFMwpE0NKEe2wi26r42GgMBzND8X8cDQ_PJgvyJsZ-YFjsMk4LFb-YgAgmVBQ_JdfECWt_j_du_zHYB_2Phf01Yw6xH9I13DKJfDffe2i1A</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Lanotte, Francesco</creator><creator>McKinney, Zach</creator><creator>Grazi, Lorenzo</creator><creator>Chen, Baojun</creator><creator>Crea, Simona</creator><creator>Vitiello, Nicola</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2840-7617</orcidid><orcidid>https://orcid.org/0000-0001-9833-4401</orcidid><orcidid>https://orcid.org/0000-0003-4899-9346</orcidid><orcidid>https://orcid.org/0000-0001-8978-1074</orcidid><orcidid>https://orcid.org/0000-0001-7336-9050</orcidid><orcidid>https://orcid.org/0000-0001-8636-7716</orcidid></search><sort><creationdate>202112</creationdate><title>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</title><author>Lanotte, Francesco ; McKinney, Zach ; Grazi, Lorenzo ; Chen, Baojun ; Crea, Simona ; Vitiello, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-dcff585b8a844c2d6ec79bad9c4fb07b5a29957a1ac12c6bcdc776cc4a8e57823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Biomechanics</topic><topic>Control methods</topic><topic>Dynamic control</topic><topic>Electromyography</topic><topic>Exoskeletons</topic><topic>Hoisting</topic><topic>Joints (anatomy)</topic><topic>Kinematics</topic><topic>Muscles</topic><topic>Physical work</topic><topic>Real-time systems</topic><topic>Rehabilitation</topic><topic>Robot control</topic><topic>Robotics</topic><topic>Science &amp; Technology</topic><topic>Synchronism</topic><topic>Technology</topic><topic>Trajectory analysis</topic><topic>wearable robotics</topic><topic>Wearable robots</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanotte, Francesco</creatorcontrib><creatorcontrib>McKinney, Zach</creatorcontrib><creatorcontrib>Grazi, Lorenzo</creatorcontrib><creatorcontrib>Chen, Baojun</creatorcontrib><creatorcontrib>Crea, Simona</creatorcontrib><creatorcontrib>Vitiello, Nicola</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lanotte, Francesco</au><au>McKinney, Zach</au><au>Grazi, Lorenzo</au><au>Chen, Baojun</au><au>Crea, Simona</au><au>Vitiello, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><stitle>IEEE T ROBOT</stitle><date>2021-12</date><risdate>2021</risdate><volume>37</volume><issue>6</issue><spage>2193</spage><epage>2209</epage><pages>2193-2209</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Dynamic control of robotic exoskeletons is paramount to ensuring safe, synergistic assistive action of functional benefit to users. To date, exoskeleton controllers have excelled in rhythmic and quasi-rhythmic tasks, whereas control methods for assisting discrete movements remain limited by their task-specificity. Inspired by neurophysiological dynamic movement primitives (DMPs), we formulated a novel controller that facilitated a variety of lifting movements using a single adaptive DMP (aDMP), for wearable robotic assistance of discrete movements. For a variety of load lifting tasks, we first benchmarked our method's trajectory prediction accuracy against the state-of-the-art DMP using passively recorded exoskeleton sensor data (offline), followed by a functional validation of online aDMP trajectory estimates. Finally, we assessed the functional effects of aDMP-based exoskeletal assistance on joint kinematics and muscular activity during repetitive lifting. The new aDMP method accurately predicted and smoothly synchronized robotic assistance with variable movement trajectories, resulting in reduced muscular activation of the erector spinae muscles (up to 47.6%) while preserving lower-limb joint kinematics and reducing the extension time by 15.5% compared to unassisted conditions. This method holds promise for use in a wide range of wearable robotic applications, including both clinical rehabilitation and user assistance in activities of daily living and/or manual labor.</abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TRO.2021.3073836</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-2840-7617</orcidid><orcidid>https://orcid.org/0000-0001-9833-4401</orcidid><orcidid>https://orcid.org/0000-0003-4899-9346</orcidid><orcidid>https://orcid.org/0000-0001-8978-1074</orcidid><orcidid>https://orcid.org/0000-0001-7336-9050</orcidid><orcidid>https://orcid.org/0000-0001-8636-7716</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2021-12, Vol.37 (6), p.2193-2209
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2605708617
source IEEE Electronic Library (IEL)
subjects Adaptive control
Biomechanics
Control methods
Dynamic control
Electromyography
Exoskeletons
Hoisting
Joints (anatomy)
Kinematics
Muscles
Physical work
Real-time systems
Rehabilitation
Robot control
Robotics
Science & Technology
Synchronism
Technology
Trajectory analysis
wearable robotics
Wearable robots
Wearable technology
title Adaptive Control Method for Dynamic Synchronization of Wearable Robotic Assistance to Discrete Movements: Validation for Use Case of Lifting Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Control%20Method%20for%20Dynamic%20Synchronization%20of%20Wearable%20Robotic%20Assistance%20to%20Discrete%20Movements:%20Validation%20for%20Use%20Case%20of%20Lifting%20Tasks&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Lanotte,%20Francesco&rft.date=2021-12&rft.volume=37&rft.issue=6&rft.spage=2193&rft.epage=2209&rft.pages=2193-2209&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2021.3073836&rft_dat=%3Cproquest_RIE%3E2605708617%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605708617&rft_id=info:pmid/&rft_ieee_id=9431370&rfr_iscdi=true