DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images

In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-16
Hauptverfasser: He, Qibin, Sun, Xian, Yan, Zhiyuan, Fu, Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator He, Qibin
Sun, Xian
Yan, Zhiyuan
Fu, Kun
description In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds.
doi_str_mv 10.1109/TGRS.2020.3045474
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2605707305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9314019</ieee_id><sourcerecordid>2605707305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExH9AcbNJK6L8-zDHRRFEqIJYFw2084tFNsOdqZR_71DIK7u5nzn5nwI3VIyopQkD-vZcjVihJERJ0KKSJyhAZUyDkgoxDkaEJqEAYsTdomurN0RQoWk0QBtp-PJK7hHPIXSdI3Ka8CpaR38uF7VWLUaT0zfatX9Bh9QbbYONPbAt-k-sSdwWptee9pB4SrT4qrFS2iMA7yC1lbtBs8btQF7jS5KVVu4Od0hen9-WqcvweJtNk_Hi6BgCXdBRLSKFUDMcs5UHMpcJ7EueKhDCaDCHEAUTBcs1xQiHpdaidjvBMYlZSLhQ3R_7N135qsH67Kd6bvWv8xYSGREIk6kT9FjquiMtR2U2b6rGj8yoyQ7CM0OQrOD0Owk1DN3R6YCgP98wqnwcvkf7ANySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605707305</pqid></control><display><type>article</type><title>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>He, Qibin ; Sun, Xian ; Yan, Zhiyuan ; Fu, Kun</creator><creatorcontrib>He, Qibin ; Sun, Xian ; Yan, Zhiyuan ; Fu, Kun</creatorcontrib><description>In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3045474</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptation models ; Artificial neural networks ; Cloud computing ; Cloud detection ; Clouds ; Complexity ; Computational modeling ; Computer applications ; Convolutional codes ; Datasets ; deformable context ; Deformation ; Detection ; False alarms ; Feature extraction ; Formability ; lightweight network ; Neural networks ; Remote sensing ; remote sensing images ; Semantics ; Spatial discrimination ; Spatial resolution</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</citedby><cites>FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</cites><orcidid>0000-0002-0038-9816 ; 0000-0002-4264-6868 ; 0000-0003-2158-559X ; 0000-0002-0450-6469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9314019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9314019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Fu, Kun</creatorcontrib><title>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Cloud detection</subject><subject>Clouds</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Convolutional codes</subject><subject>Datasets</subject><subject>deformable context</subject><subject>Deformation</subject><subject>Detection</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>lightweight network</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Semantics</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwkAUhSdGExH9AcbNJK6L8-zDHRRFEqIJYFw2084tFNsOdqZR_71DIK7u5nzn5nwI3VIyopQkD-vZcjVihJERJ0KKSJyhAZUyDkgoxDkaEJqEAYsTdomurN0RQoWk0QBtp-PJK7hHPIXSdI3Ka8CpaR38uF7VWLUaT0zfatX9Bh9QbbYONPbAt-k-sSdwWptee9pB4SrT4qrFS2iMA7yC1lbtBs8btQF7jS5KVVu4Od0hen9-WqcvweJtNk_Hi6BgCXdBRLSKFUDMcs5UHMpcJ7EueKhDCaDCHEAUTBcs1xQiHpdaidjvBMYlZSLhQ3R_7N135qsH67Kd6bvWv8xYSGREIk6kT9FjquiMtR2U2b6rGj8yoyQ7CM0OQrOD0Owk1DN3R6YCgP98wqnwcvkf7ANySA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>He, Qibin</creator><creator>Sun, Xian</creator><creator>Yan, Zhiyuan</creator><creator>Fu, Kun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid><orcidid>https://orcid.org/0000-0002-0450-6469</orcidid></search><sort><creationdate>2022</creationdate><title>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</title><author>He, Qibin ; Sun, Xian ; Yan, Zhiyuan ; Fu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Cloud detection</topic><topic>Clouds</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Convolutional codes</topic><topic>Datasets</topic><topic>deformable context</topic><topic>Deformation</topic><topic>Detection</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>lightweight network</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Semantics</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Fu, Kun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Qibin</au><au>Sun, Xian</au><au>Yan, Zhiyuan</au><au>Fu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3045474</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid><orcidid>https://orcid.org/0000-0002-0450-6469</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2605707305
source IEEE Electronic Library (IEL)
subjects Accuracy
Adaptation models
Artificial neural networks
Cloud computing
Cloud detection
Clouds
Complexity
Computational modeling
Computer applications
Convolutional codes
Datasets
deformable context
Deformation
Detection
False alarms
Feature extraction
Formability
lightweight network
Neural networks
Remote sensing
remote sensing images
Semantics
Spatial discrimination
Spatial resolution
title DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DABNet:%20Deformable%20Contextual%20and%20Boundary-Weighted%20Network%20for%20Cloud%20Detection%20in%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=He,%20Qibin&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3045474&rft_dat=%3Cproquest_RIE%3E2605707305%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605707305&rft_id=info:pmid/&rft_ieee_id=9314019&rfr_iscdi=true