DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images
In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | He, Qibin Sun, Xian Yan, Zhiyuan Fu, Kun |
description | In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds. |
doi_str_mv | 10.1109/TGRS.2020.3045474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2605707305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9314019</ieee_id><sourcerecordid>2605707305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExH9AcbNJK6L8-zDHRRFEqIJYFw2084tFNsOdqZR_71DIK7u5nzn5nwI3VIyopQkD-vZcjVihJERJ0KKSJyhAZUyDkgoxDkaEJqEAYsTdomurN0RQoWk0QBtp-PJK7hHPIXSdI3Ka8CpaR38uF7VWLUaT0zfatX9Bh9QbbYONPbAt-k-sSdwWptee9pB4SrT4qrFS2iMA7yC1lbtBs8btQF7jS5KVVu4Od0hen9-WqcvweJtNk_Hi6BgCXdBRLSKFUDMcs5UHMpcJ7EueKhDCaDCHEAUTBcs1xQiHpdaidjvBMYlZSLhQ3R_7N135qsH67Kd6bvWv8xYSGREIk6kT9FjquiMtR2U2b6rGj8yoyQ7CM0OQrOD0Owk1DN3R6YCgP98wqnwcvkf7ANySA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605707305</pqid></control><display><type>article</type><title>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</title><source>IEEE Electronic Library (IEL)</source><creator>He, Qibin ; Sun, Xian ; Yan, Zhiyuan ; Fu, Kun</creator><creatorcontrib>He, Qibin ; Sun, Xian ; Yan, Zhiyuan ; Fu, Kun</creatorcontrib><description>In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2020.3045474</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Adaptation models ; Artificial neural networks ; Cloud computing ; Cloud detection ; Clouds ; Complexity ; Computational modeling ; Computer applications ; Convolutional codes ; Datasets ; deformable context ; Deformation ; Detection ; False alarms ; Feature extraction ; Formability ; lightweight network ; Neural networks ; Remote sensing ; remote sensing images ; Semantics ; Spatial discrimination ; Spatial resolution</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</citedby><cites>FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</cites><orcidid>0000-0002-0038-9816 ; 0000-0002-4264-6868 ; 0000-0003-2158-559X ; 0000-0002-0450-6469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9314019$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9314019$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Fu, Kun</creatorcontrib><title>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds.</description><subject>Accuracy</subject><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>Cloud computing</subject><subject>Cloud detection</subject><subject>Clouds</subject><subject>Complexity</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Convolutional codes</subject><subject>Datasets</subject><subject>deformable context</subject><subject>Deformation</subject><subject>Detection</subject><subject>False alarms</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>lightweight network</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Semantics</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwkAUhSdGExH9AcbNJK6L8-zDHRRFEqIJYFw2084tFNsOdqZR_71DIK7u5nzn5nwI3VIyopQkD-vZcjVihJERJ0KKSJyhAZUyDkgoxDkaEJqEAYsTdomurN0RQoWk0QBtp-PJK7hHPIXSdI3Ka8CpaR38uF7VWLUaT0zfatX9Bh9QbbYONPbAt-k-sSdwWptee9pB4SrT4qrFS2iMA7yC1lbtBs8btQF7jS5KVVu4Od0hen9-WqcvweJtNk_Hi6BgCXdBRLSKFUDMcs5UHMpcJ7EueKhDCaDCHEAUTBcs1xQiHpdaidjvBMYlZSLhQ3R_7N135qsH67Kd6bvWv8xYSGREIk6kT9FjquiMtR2U2b6rGj8yoyQ7CM0OQrOD0Owk1DN3R6YCgP98wqnwcvkf7ANySA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>He, Qibin</creator><creator>Sun, Xian</creator><creator>Yan, Zhiyuan</creator><creator>Fu, Kun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid><orcidid>https://orcid.org/0000-0002-0450-6469</orcidid></search><sort><creationdate>2022</creationdate><title>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</title><author>He, Qibin ; Sun, Xian ; Yan, Zhiyuan ; Fu, Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-70da8aee82b32a865bd98dc36d65eea6bee4c2dc2bd1e738fda48558e23512493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>Cloud computing</topic><topic>Cloud detection</topic><topic>Clouds</topic><topic>Complexity</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Convolutional codes</topic><topic>Datasets</topic><topic>deformable context</topic><topic>Deformation</topic><topic>Detection</topic><topic>False alarms</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>lightweight network</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Semantics</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Qibin</creatorcontrib><creatorcontrib>Sun, Xian</creatorcontrib><creatorcontrib>Yan, Zhiyuan</creatorcontrib><creatorcontrib>Fu, Kun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Qibin</au><au>Sun, Xian</au><au>Yan, Zhiyuan</au><au>Fu, Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>16</epage><pages>1-16</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In recent years, deep convolutional neural networks (DCNNs) have made significant progress in cloud detection tasks, and the detection accuracy has been greatly improved. However, most existing CNN-based models have high computational complexity, which limits their practical application, especially for spaceborne optical remote sensing. In addition, most of the methods cannot make adaptive adjustments based on the structural information of the clouds, and blurred boundaries often occur in the detection results. In order to address these problems, this article proposes a lightweight network (DABNet) to achieve high-accuracy detection of complex clouds, not only a clearer boundary but also lower false-alarm rate. Specifically, a deformable context feature pyramid module is proposed to improve the adaptive modeling capability of multiscale features. Besides, a boundary-weighted loss function is designed to direct the network to focus on cloud boundary information and optimize the relevant detection results. The proposed method has been validated on two data sets: the public GF-1 WFV benchmark and our self-built GF-2 cloud detection data set with higher spatial resolution. The experimental results exhibit that DABNet achieves state-of-the-art performance while only using 4.12M parameters and 8.29G multiadds.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2020.3045474</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0038-9816</orcidid><orcidid>https://orcid.org/0000-0002-4264-6868</orcidid><orcidid>https://orcid.org/0000-0003-2158-559X</orcidid><orcidid>https://orcid.org/0000-0002-0450-6469</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-16 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2605707305 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Adaptation models Artificial neural networks Cloud computing Cloud detection Clouds Complexity Computational modeling Computer applications Convolutional codes Datasets deformable context Deformation Detection False alarms Feature extraction Formability lightweight network Neural networks Remote sensing remote sensing images Semantics Spatial discrimination Spatial resolution |
title | DABNet: Deformable Contextual and Boundary-Weighted Network for Cloud Detection in Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DABNet:%20Deformable%20Contextual%20and%20Boundary-Weighted%20Network%20for%20Cloud%20Detection%20in%20Remote%20Sensing%20Images&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=He,%20Qibin&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2020.3045474&rft_dat=%3Cproquest_RIE%3E2605707305%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605707305&rft_id=info:pmid/&rft_ieee_id=9314019&rfr_iscdi=true |