DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses
•SSIFP scheme identifies service-specific sensor data to satisfy service demands.•Identification process is eased with DRL in identifying the sensor information fusion.•This level identification reduces the unavailability & delays in application service. Multi-sensor information fusion aids diff...
Gespeichert in:
Veröffentlicht in: | Measurement : journal of the International Measurement Confederation 2021-11, Vol.185, p.110008, Article 110008 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110008 |
container_title | Measurement : journal of the International Measurement Confederation |
container_volume | 185 |
creator | AlZubi, Ahmad A. Abugabah, Ahed Al-Maitah, Mohammed Ibrahim AlZobi, Firas |
description | •SSIFP scheme identifies service-specific sensor data to satisfy service demands.•Identification process is eased with DRL in identifying the sensor information fusion.•This level identification reduces the unavailability & delays in application service.
Multi-sensor information fusion aids different services to meet the application requirements through independent and joint data assimilation. The role of multiple sensors in smart connected applications helps to improve their efficiency regardless of the users. However, the assimilation of different information is subject to resource and time constraints at the time of application response. This results in partial fulfillment of the application services, and hence, this article introduces a service selective information fusion processing (SSIFP) scheme. The proposed scheme identifies service-specific sensor information for satisfying the application service demands. The identification process is eased with deep recurrent learning in determining the level of sensor information fusion. This level identification reduces the unavailability of services (resource constraint) and delays in application services (time constraint). Through this identification, the applications' precise demands are detected, and selective fusion is performed to mitigate the issues above. The proposed system's performance is verified using the metrics delay, fusion rate, service loss, and backlogs. |
doi_str_mv | 10.1016/j.measurement.2021.110008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605659816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263224121009362</els_id><sourcerecordid>2605659816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3defc957302e116b03a468875dd6f67abf5bbf0cd17aee977c6e321596ebeec93</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEuXxH4w4p_jROMkRladUxAUkblbirKmrxi5epxJH_jmuygFunEZazczufoRccDbljKur1XSAFscIA_g0FUzwKeeMsfqATHhdyWLGxdshmTChZCHEjB-TE8RVdijZqAn5ulnQp3GdXIHgMUTqvA1xaJMLntoRd4IQt85A1jWY5Lbwx4RmmZdTu8sOmxi2zr_TtAT66BNED4kGS1-WeYq0axF6OuZCGgE3wSPgGTmy7Rrh_EdPyevd7cv8oVg83z_OrxeFkbMmFbIHa5qykkwA56pjsp2puq7KvldWVW1ny66zzPS8agGaqjIKpOBlo6ADMI08JZf73nzjxwiY9CqM0eeVWihWqrKpucquZu8yMSBGsHoT3dDGT82Z3hHXK_2LuN4R13viOTvfZyG_sXUQNRoH3kDvYgan--D-0fINrHOT5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605659816</pqid></control><display><type>article</type><title>DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses</title><source>Elsevier ScienceDirect Journals Complete</source><creator>AlZubi, Ahmad A. ; Abugabah, Ahed ; Al-Maitah, Mohammed ; Ibrahim AlZobi, Firas</creator><creatorcontrib>AlZubi, Ahmad A. ; Abugabah, Ahed ; Al-Maitah, Mohammed ; Ibrahim AlZobi, Firas</creatorcontrib><description>•SSIFP scheme identifies service-specific sensor data to satisfy service demands.•Identification process is eased with DRL in identifying the sensor information fusion.•This level identification reduces the unavailability & delays in application service.
Multi-sensor information fusion aids different services to meet the application requirements through independent and joint data assimilation. The role of multiple sensors in smart connected applications helps to improve their efficiency regardless of the users. However, the assimilation of different information is subject to resource and time constraints at the time of application response. This results in partial fulfillment of the application services, and hence, this article introduces a service selective information fusion processing (SSIFP) scheme. The proposed scheme identifies service-specific sensor information for satisfying the application service demands. The identification process is eased with deep recurrent learning in determining the level of sensor information fusion. This level identification reduces the unavailability of services (resource constraint) and delays in application services (time constraint). Through this identification, the applications' precise demands are detected, and selective fusion is performed to mitigate the issues above. The proposed system's performance is verified using the metrics delay, fusion rate, service loss, and backlogs.</description><identifier>ISSN: 0263-2241</identifier><identifier>EISSN: 1873-412X</identifier><identifier>DOI: 10.1016/j.measurement.2021.110008</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Algorithms ; Data assimilation ; Data integration ; Deep Learning ; Information Fusion ; Internet of Things ; Measurement ; Multi-Sensor ; Multisensor fusion ; Resource Constraint ; Sensors ; Smart sensors ; Time Constraint</subject><ispartof>Measurement : journal of the International Measurement Confederation, 2021-11, Vol.185, p.110008, Article 110008</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier Science Ltd. Nov 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3defc957302e116b03a468875dd6f67abf5bbf0cd17aee977c6e321596ebeec93</citedby><cites>FETCH-LOGICAL-c349t-3defc957302e116b03a468875dd6f67abf5bbf0cd17aee977c6e321596ebeec93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.measurement.2021.110008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>AlZubi, Ahmad A.</creatorcontrib><creatorcontrib>Abugabah, Ahed</creatorcontrib><creatorcontrib>Al-Maitah, Mohammed</creatorcontrib><creatorcontrib>Ibrahim AlZobi, Firas</creatorcontrib><title>DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses</title><title>Measurement : journal of the International Measurement Confederation</title><description>•SSIFP scheme identifies service-specific sensor data to satisfy service demands.•Identification process is eased with DRL in identifying the sensor information fusion.•This level identification reduces the unavailability & delays in application service.
Multi-sensor information fusion aids different services to meet the application requirements through independent and joint data assimilation. The role of multiple sensors in smart connected applications helps to improve their efficiency regardless of the users. However, the assimilation of different information is subject to resource and time constraints at the time of application response. This results in partial fulfillment of the application services, and hence, this article introduces a service selective information fusion processing (SSIFP) scheme. The proposed scheme identifies service-specific sensor information for satisfying the application service demands. The identification process is eased with deep recurrent learning in determining the level of sensor information fusion. This level identification reduces the unavailability of services (resource constraint) and delays in application services (time constraint). Through this identification, the applications' precise demands are detected, and selective fusion is performed to mitigate the issues above. The proposed system's performance is verified using the metrics delay, fusion rate, service loss, and backlogs.</description><subject>Algorithms</subject><subject>Data assimilation</subject><subject>Data integration</subject><subject>Deep Learning</subject><subject>Information Fusion</subject><subject>Internet of Things</subject><subject>Measurement</subject><subject>Multi-Sensor</subject><subject>Multisensor fusion</subject><subject>Resource Constraint</subject><subject>Sensors</subject><subject>Smart sensors</subject><subject>Time Constraint</subject><issn>0263-2241</issn><issn>1873-412X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEuXxH4w4p_jROMkRladUxAUkblbirKmrxi5epxJH_jmuygFunEZazczufoRccDbljKur1XSAFscIA_g0FUzwKeeMsfqATHhdyWLGxdshmTChZCHEjB-TE8RVdijZqAn5ulnQp3GdXIHgMUTqvA1xaJMLntoRd4IQt85A1jWY5Lbwx4RmmZdTu8sOmxi2zr_TtAT66BNED4kGS1-WeYq0axF6OuZCGgE3wSPgGTmy7Rrh_EdPyevd7cv8oVg83z_OrxeFkbMmFbIHa5qykkwA56pjsp2puq7KvldWVW1ny66zzPS8agGaqjIKpOBlo6ADMI08JZf73nzjxwiY9CqM0eeVWihWqrKpucquZu8yMSBGsHoT3dDGT82Z3hHXK_2LuN4R13viOTvfZyG_sXUQNRoH3kDvYgan--D-0fINrHOT5g</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>AlZubi, Ahmad A.</creator><creator>Abugabah, Ahed</creator><creator>Al-Maitah, Mohammed</creator><creator>Ibrahim AlZobi, Firas</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202111</creationdate><title>DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses</title><author>AlZubi, Ahmad A. ; Abugabah, Ahed ; Al-Maitah, Mohammed ; Ibrahim AlZobi, Firas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3defc957302e116b03a468875dd6f67abf5bbf0cd17aee977c6e321596ebeec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Data assimilation</topic><topic>Data integration</topic><topic>Deep Learning</topic><topic>Information Fusion</topic><topic>Internet of Things</topic><topic>Measurement</topic><topic>Multi-Sensor</topic><topic>Multisensor fusion</topic><topic>Resource Constraint</topic><topic>Sensors</topic><topic>Smart sensors</topic><topic>Time Constraint</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AlZubi, Ahmad A.</creatorcontrib><creatorcontrib>Abugabah, Ahed</creatorcontrib><creatorcontrib>Al-Maitah, Mohammed</creatorcontrib><creatorcontrib>Ibrahim AlZobi, Firas</creatorcontrib><collection>CrossRef</collection><jtitle>Measurement : journal of the International Measurement Confederation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AlZubi, Ahmad A.</au><au>Abugabah, Ahed</au><au>Al-Maitah, Mohammed</au><au>Ibrahim AlZobi, Firas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses</atitle><jtitle>Measurement : journal of the International Measurement Confederation</jtitle><date>2021-11</date><risdate>2021</risdate><volume>185</volume><spage>110008</spage><pages>110008-</pages><artnum>110008</artnum><issn>0263-2241</issn><eissn>1873-412X</eissn><abstract>•SSIFP scheme identifies service-specific sensor data to satisfy service demands.•Identification process is eased with DRL in identifying the sensor information fusion.•This level identification reduces the unavailability & delays in application service.
Multi-sensor information fusion aids different services to meet the application requirements through independent and joint data assimilation. The role of multiple sensors in smart connected applications helps to improve their efficiency regardless of the users. However, the assimilation of different information is subject to resource and time constraints at the time of application response. This results in partial fulfillment of the application services, and hence, this article introduces a service selective information fusion processing (SSIFP) scheme. The proposed scheme identifies service-specific sensor information for satisfying the application service demands. The identification process is eased with deep recurrent learning in determining the level of sensor information fusion. This level identification reduces the unavailability of services (resource constraint) and delays in application services (time constraint). Through this identification, the applications' precise demands are detected, and selective fusion is performed to mitigate the issues above. The proposed system's performance is verified using the metrics delay, fusion rate, service loss, and backlogs.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.measurement.2021.110008</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-2241 |
ispartof | Measurement : journal of the International Measurement Confederation, 2021-11, Vol.185, p.110008, Article 110008 |
issn | 0263-2241 1873-412X |
language | eng |
recordid | cdi_proquest_journals_2605659816 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Data assimilation Data integration Deep Learning Information Fusion Internet of Things Measurement Multi-Sensor Multisensor fusion Resource Constraint Sensors Smart sensors Time Constraint |
title | DL Multi-sensor information fusion service selective information scheme for improving the Internet of Things based user responses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DL%20Multi-sensor%20information%20fusion%20service%20selective%20information%20scheme%20for%20improving%20the%20Internet%20of%20Things%20based%20user%20responses&rft.jtitle=Measurement%20:%20journal%20of%20the%20International%20Measurement%20Confederation&rft.au=AlZubi,%20Ahmad%20A.&rft.date=2021-11&rft.volume=185&rft.spage=110008&rft.pages=110008-&rft.artnum=110008&rft.issn=0263-2241&rft.eissn=1873-412X&rft_id=info:doi/10.1016/j.measurement.2021.110008&rft_dat=%3Cproquest_cross%3E2605659816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605659816&rft_id=info:pmid/&rft_els_id=S0263224121009362&rfr_iscdi=true |