Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system

Summary Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily mean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of adaptive control and signal processing 2021-12, Vol.35 (12), p.2423-2445
Hauptverfasser: Tao, Guili, Liu, Wenqiang, Wang, Xuemei, Zhang, Jianfei, Yu, Haiying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2445
container_issue 12
container_start_page 2423
container_title International journal of adaptive control and signal processing
container_volume 35
creator Tao, Guili
Liu, Wenqiang
Wang, Xuemei
Zhang, Jianfei
Yu, Haiying
description Summary Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system.
doi_str_mv 10.1002/acs.3330
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605508234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605508234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYq-AgDbtxMPUmaSbMsgzcsFrzgMuQqU-ZSkxmkrnwEn9EnMbVuXZ3F_51z4EfoFMMEA5ALZeKEUgp7aIRBiBxjzPbRCGYC8oISfoiOYlwBpAzTEbp_6PQQ-6ycvyyvsjtVN6rN1sHZyvRdiJnvQja0xoVeVW3WDHVffX9-RdfGFLy61gVVVx_OZnETe9ccowOv6uhO_uYYPV9dPpU3-WJ5fVvOF7khgkIuwGrM9JQ4Qy3zxmvKi5myFjTjANwKogljwDz3bqp84azghlNisMZYaTpGZ7u769C9DS72ctUNoU0vJSkgbc4InSZ1vlMmdDEG5-U6VI0KG4lBbtuSqS25bSvRfEffq9pt_nVyXj7--h8rM2xl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605508234</pqid></control><display><type>article</type><title>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</title><source>Wiley Online Library All Journals</source><creator>Tao, Guili ; Liu, Wenqiang ; Wang, Xuemei ; Zhang, Jianfei ; Yu, Haiying</creator><creatorcontrib>Tao, Guili ; Liu, Wenqiang ; Wang, Xuemei ; Zhang, Jianfei ; Yu, Haiying</creatorcontrib><description>Summary Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system.</description><identifier>ISSN: 0890-6327</identifier><identifier>EISSN: 1099-1115</identifier><identifier>DOI: 10.1002/acs.3330</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Algorithms ; Error analysis ; Error correction ; Minimax technique ; multiplicative noises ; multi‐sensor generalized system ; Noise ; Noise prediction ; noise variance uncertainty ; robust Kalman predictors ; Robustness ; Singular value decomposition ; Subsystems ; Upper bounds ; weighted observation fusion ; White noise</subject><ispartof>International journal of adaptive control and signal processing, 2021-12, Vol.35 (12), p.2423-2445</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</citedby><cites>FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</cites><orcidid>0000-0003-3332-2009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Facs.3330$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Facs.3330$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Tao, Guili</creatorcontrib><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Zhang, Jianfei</creatorcontrib><creatorcontrib>Yu, Haiying</creatorcontrib><title>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</title><title>International journal of adaptive control and signal processing</title><description>Summary Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system.</description><subject>Algorithms</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Minimax technique</subject><subject>multiplicative noises</subject><subject>multi‐sensor generalized system</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>noise variance uncertainty</subject><subject>robust Kalman predictors</subject><subject>Robustness</subject><subject>Singular value decomposition</subject><subject>Subsystems</subject><subject>Upper bounds</subject><subject>weighted observation fusion</subject><subject>White noise</subject><issn>0890-6327</issn><issn>1099-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYq-AgDbtxMPUmaSbMsgzcsFrzgMuQqU-ZSkxmkrnwEn9EnMbVuXZ3F_51z4EfoFMMEA5ALZeKEUgp7aIRBiBxjzPbRCGYC8oISfoiOYlwBpAzTEbp_6PQQ-6ycvyyvsjtVN6rN1sHZyvRdiJnvQja0xoVeVW3WDHVffX9-RdfGFLy61gVVVx_OZnETe9ccowOv6uhO_uYYPV9dPpU3-WJ5fVvOF7khgkIuwGrM9JQ4Qy3zxmvKi5myFjTjANwKogljwDz3bqp84azghlNisMZYaTpGZ7u769C9DS72ctUNoU0vJSkgbc4InSZ1vlMmdDEG5-U6VI0KG4lBbtuSqS25bSvRfEffq9pt_nVyXj7--h8rM2xl</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Tao, Guili</creator><creator>Liu, Wenqiang</creator><creator>Wang, Xuemei</creator><creator>Zhang, Jianfei</creator><creator>Yu, Haiying</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3332-2009</orcidid></search><sort><creationdate>202112</creationdate><title>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</title><author>Tao, Guili ; Liu, Wenqiang ; Wang, Xuemei ; Zhang, Jianfei ; Yu, Haiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Minimax technique</topic><topic>multiplicative noises</topic><topic>multi‐sensor generalized system</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>noise variance uncertainty</topic><topic>robust Kalman predictors</topic><topic>Robustness</topic><topic>Singular value decomposition</topic><topic>Subsystems</topic><topic>Upper bounds</topic><topic>weighted observation fusion</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Guili</creatorcontrib><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Zhang, Jianfei</creatorcontrib><creatorcontrib>Yu, Haiying</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of adaptive control and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Guili</au><au>Liu, Wenqiang</au><au>Wang, Xuemei</au><au>Zhang, Jianfei</au><au>Yu, Haiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</atitle><jtitle>International journal of adaptive control and signal processing</jtitle><date>2021-12</date><risdate>2021</risdate><volume>35</volume><issue>12</issue><spage>2423</spage><epage>2445</epage><pages>2423-2445</pages><issn>0890-6327</issn><eissn>1099-1115</eissn><abstract>Summary Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/acs.3330</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3332-2009</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0890-6327
ispartof International journal of adaptive control and signal processing, 2021-12, Vol.35 (12), p.2423-2445
issn 0890-6327
1099-1115
language eng
recordid cdi_proquest_journals_2605508234
source Wiley Online Library All Journals
subjects Algorithms
Error analysis
Error correction
Minimax technique
multiplicative noises
multi‐sensor generalized system
Noise
Noise prediction
noise variance uncertainty
robust Kalman predictors
Robustness
Singular value decomposition
Subsystems
Upper bounds
weighted observation fusion
White noise
title Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20CAWOF%20Kalman%20predictors%20for%20uncertain%20multi%E2%80%90sensor%20generalized%20system&rft.jtitle=International%20journal%20of%20adaptive%20control%20and%20signal%20processing&rft.au=Tao,%20Guili&rft.date=2021-12&rft.volume=35&rft.issue=12&rft.spage=2423&rft.epage=2445&rft.pages=2423-2445&rft.issn=0890-6327&rft.eissn=1099-1115&rft_id=info:doi/10.1002/acs.3330&rft_dat=%3Cproquest_cross%3E2605508234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605508234&rft_id=info:pmid/&rfr_iscdi=true