Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system
Summary Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily mean...
Gespeichert in:
Veröffentlicht in: | International journal of adaptive control and signal processing 2021-12, Vol.35 (12), p.2423-2445 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2445 |
---|---|
container_issue | 12 |
container_start_page | 2423 |
container_title | International journal of adaptive control and signal processing |
container_volume | 35 |
creator | Tao, Guili Liu, Wenqiang Wang, Xuemei Zhang, Jianfei Yu, Haiying |
description | Summary
Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system. |
doi_str_mv | 10.1002/acs.3330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605508234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605508234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYq-AgDbtxMPUmaSbMsgzcsFrzgMuQqU-ZSkxmkrnwEn9EnMbVuXZ3F_51z4EfoFMMEA5ALZeKEUgp7aIRBiBxjzPbRCGYC8oISfoiOYlwBpAzTEbp_6PQQ-6ycvyyvsjtVN6rN1sHZyvRdiJnvQja0xoVeVW3WDHVffX9-RdfGFLy61gVVVx_OZnETe9ccowOv6uhO_uYYPV9dPpU3-WJ5fVvOF7khgkIuwGrM9JQ4Qy3zxmvKi5myFjTjANwKogljwDz3bqp84azghlNisMZYaTpGZ7u769C9DS72ctUNoU0vJSkgbc4InSZ1vlMmdDEG5-U6VI0KG4lBbtuSqS25bSvRfEffq9pt_nVyXj7--h8rM2xl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605508234</pqid></control><display><type>article</type><title>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</title><source>Wiley Online Library All Journals</source><creator>Tao, Guili ; Liu, Wenqiang ; Wang, Xuemei ; Zhang, Jianfei ; Yu, Haiying</creator><creatorcontrib>Tao, Guili ; Liu, Wenqiang ; Wang, Xuemei ; Zhang, Jianfei ; Yu, Haiying</creatorcontrib><description>Summary
Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system.</description><identifier>ISSN: 0890-6327</identifier><identifier>EISSN: 1099-1115</identifier><identifier>DOI: 10.1002/acs.3330</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Error analysis ; Error correction ; Minimax technique ; multiplicative noises ; multi‐sensor generalized system ; Noise ; Noise prediction ; noise variance uncertainty ; robust Kalman predictors ; Robustness ; Singular value decomposition ; Subsystems ; Upper bounds ; weighted observation fusion ; White noise</subject><ispartof>International journal of adaptive control and signal processing, 2021-12, Vol.35 (12), p.2423-2445</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</citedby><cites>FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</cites><orcidid>0000-0003-3332-2009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Facs.3330$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Facs.3330$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Tao, Guili</creatorcontrib><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Zhang, Jianfei</creatorcontrib><creatorcontrib>Yu, Haiying</creatorcontrib><title>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</title><title>International journal of adaptive control and signal processing</title><description>Summary
Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system.</description><subject>Algorithms</subject><subject>Error analysis</subject><subject>Error correction</subject><subject>Minimax technique</subject><subject>multiplicative noises</subject><subject>multi‐sensor generalized system</subject><subject>Noise</subject><subject>Noise prediction</subject><subject>noise variance uncertainty</subject><subject>robust Kalman predictors</subject><subject>Robustness</subject><subject>Singular value decomposition</subject><subject>Subsystems</subject><subject>Upper bounds</subject><subject>weighted observation fusion</subject><subject>White noise</subject><issn>0890-6327</issn><issn>1099-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYq-AgDbtxMPUmaSbMsgzcsFrzgMuQqU-ZSkxmkrnwEn9EnMbVuXZ3F_51z4EfoFMMEA5ALZeKEUgp7aIRBiBxjzPbRCGYC8oISfoiOYlwBpAzTEbp_6PQQ-6ycvyyvsjtVN6rN1sHZyvRdiJnvQja0xoVeVW3WDHVffX9-RdfGFLy61gVVVx_OZnETe9ccowOv6uhO_uYYPV9dPpU3-WJ5fVvOF7khgkIuwGrM9JQ4Qy3zxmvKi5myFjTjANwKogljwDz3bqp84azghlNisMZYaTpGZ7u769C9DS72ctUNoU0vJSkgbc4InSZ1vlMmdDEG5-U6VI0KG4lBbtuSqS25bSvRfEffq9pt_nVyXj7--h8rM2xl</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Tao, Guili</creator><creator>Liu, Wenqiang</creator><creator>Wang, Xuemei</creator><creator>Zhang, Jianfei</creator><creator>Yu, Haiying</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3332-2009</orcidid></search><sort><creationdate>202112</creationdate><title>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</title><author>Tao, Guili ; Liu, Wenqiang ; Wang, Xuemei ; Zhang, Jianfei ; Yu, Haiying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2930-90db15b42ec3d5fcfb3768add0b57007d92b25505f7fe4af6ed97c732c1b11ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Error analysis</topic><topic>Error correction</topic><topic>Minimax technique</topic><topic>multiplicative noises</topic><topic>multi‐sensor generalized system</topic><topic>Noise</topic><topic>Noise prediction</topic><topic>noise variance uncertainty</topic><topic>robust Kalman predictors</topic><topic>Robustness</topic><topic>Singular value decomposition</topic><topic>Subsystems</topic><topic>Upper bounds</topic><topic>weighted observation fusion</topic><topic>White noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Guili</creatorcontrib><creatorcontrib>Liu, Wenqiang</creatorcontrib><creatorcontrib>Wang, Xuemei</creatorcontrib><creatorcontrib>Zhang, Jianfei</creatorcontrib><creatorcontrib>Yu, Haiying</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of adaptive control and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Guili</au><au>Liu, Wenqiang</au><au>Wang, Xuemei</au><au>Zhang, Jianfei</au><au>Yu, Haiying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system</atitle><jtitle>International journal of adaptive control and signal processing</jtitle><date>2021-12</date><risdate>2021</risdate><volume>35</volume><issue>12</issue><spage>2423</spage><epage>2445</epage><pages>2423-2445</pages><issn>0890-6327</issn><eissn>1099-1115</eissn><abstract>Summary
Robust centralized and weighted observation fusion (CAWOF) prediction algorithm is addressed in this article for an uncertain multi‐sensor generalized system with linear correlation between observation noises and an input white noise. This uncertainty in the generalized system primarily means that the variances of the aforementioned types of noise, as well as the multiplicative noise variances, are uncertain. Through singular value decomposition and virtual noise compensation, the original generalized system is changed to non‐generalized reduced‐order subsystems in which only noise variances are uncertain. Utilizing the minimax robustness estimation criterion, robust CAWOF Kalman predictors are put forward on account of the first subsystem with conservative upper bounds of noise variances. Eventually, robust observation fusion Kalman predictors of the original generalized system are proposed. The Lyapunov equation method is applied to verify two fusion predictors' robustness. With regard to all permissible uncertain practical noise variances, CAWOF predictors are robust, namely, the practical prediction error variances of two robust predictors will have minimum upper bounds. This equivalence between CAWOF Kalman predictors is proved by an information filter. In this article, the precision relationship of fusion predictors is given. Meanwhile, robust Kalman predictors for steady‐state case are proposed, and the astringency of robust time‐variant Kalman predictors is analyzed through the analysis of dynamic error system. The validity and correctness of proposed algorithm are proved by the simulation example of random dynamic input and output system in an economic system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/acs.3330</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-3332-2009</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6327 |
ispartof | International journal of adaptive control and signal processing, 2021-12, Vol.35 (12), p.2423-2445 |
issn | 0890-6327 1099-1115 |
language | eng |
recordid | cdi_proquest_journals_2605508234 |
source | Wiley Online Library All Journals |
subjects | Algorithms Error analysis Error correction Minimax technique multiplicative noises multi‐sensor generalized system Noise Noise prediction noise variance uncertainty robust Kalman predictors Robustness Singular value decomposition Subsystems Upper bounds weighted observation fusion White noise |
title | Robust CAWOF Kalman predictors for uncertain multi‐sensor generalized system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20CAWOF%20Kalman%20predictors%20for%20uncertain%20multi%E2%80%90sensor%20generalized%20system&rft.jtitle=International%20journal%20of%20adaptive%20control%20and%20signal%20processing&rft.au=Tao,%20Guili&rft.date=2021-12&rft.volume=35&rft.issue=12&rft.spage=2423&rft.epage=2445&rft.pages=2423-2445&rft.issn=0890-6327&rft.eissn=1099-1115&rft_id=info:doi/10.1002/acs.3330&rft_dat=%3Cproquest_cross%3E2605508234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605508234&rft_id=info:pmid/&rfr_iscdi=true |