Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms

Novel data-intelligence models developed through hybridization of an adaptive neuro-fuzzy inference system (ANFIS) with different metaheuristic algorithms, namely grey wolf optimizer (GWO), particle swarm optimizer (PSO) and whale optimization algorithm (WOA), are proposed for daily river flow predi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological sciences journal 2021-11, Vol.66 (15), p.2155-2169
Hauptverfasser: Dodangeh, Esmaeel, Ewees, Ahmed A., Shahid, Shamsuddin, Yaseen, Zaher Mundher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2169
container_issue 15
container_start_page 2155
container_title Hydrological sciences journal
container_volume 66
creator Dodangeh, Esmaeel
Ewees, Ahmed A.
Shahid, Shamsuddin
Yaseen, Zaher Mundher
description Novel data-intelligence models developed through hybridization of an adaptive neuro-fuzzy inference system (ANFIS) with different metaheuristic algorithms, namely grey wolf optimizer (GWO), particle swarm optimizer (PSO) and whale optimization algorithm (WOA), are proposed for daily river flow prediction of the Taleghan River, which is the major source of potable water for Tehran, the capital of Iran. Gamma test (GT) was used for the determination of input variables for the models. The ANFIS-WOA model was found to exhibit the best performance in prediction of river flow according to root mean square error (RMSE ≈ 3.75 m 3 .s −1 ) and Nash-Sutcliffe efficiency (NSE ≈ 0.93). It improved the prediction performance of the classical ANFIS model by 6.5%. The convergence speed of ANFIS-WOA was also found to be higher compared to other hybrid models. The success of the ANFIS-WOA model indicates its potential for use in the simulation of highly nonlinear daily rainfall-runoff relationships.
doi_str_mv 10.1080/02626667.2021.1985123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605429421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605429421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-743092b2c62fd28aa16a5125ba126f729aec2d7d12646b3f14c8781bd30061fa3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiWWKf4kTgJK1B5SpXYwBJZk9huXTlxsROq9OtJ1bJlNZqZc-9oLkLXlMwoKcgtYYIJIfIZI4zOaFlklPETNGE0IwlPeXaKJnsm2UPn6CLGNSE8LQWfoK9HsG7AsQancbA_OmDj_BZH2_QOOuvbO7waqmCV3WmFTb_bDdj5pa1x45V2eGu7FW50ByvdBxu7cQFu6cM4buIlOjPgor461in6fH76mL8mi_eXt_nDIqk5L7okTzkpWcVqwYxiBQAVMP6QVUCZMDkrQddM5WrsUlFxQ9O6yAtaKU6IoAb4FN0cfDfBf_c6dnLt-9COJyUTJEtZmTI6UtmBqoOPMWgjN8E2EAZJidwnKf-SlPsk5THJUXd_0NnW-NDA1genZAeD88EEaGsbJf_f4hfyH3sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605429421</pqid></control><display><type>article</type><title>Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms</title><source>Alma/SFX Local Collection</source><source>Taylor &amp; Francis Current Content Access</source><creator>Dodangeh, Esmaeel ; Ewees, Ahmed A. ; Shahid, Shamsuddin ; Yaseen, Zaher Mundher</creator><creatorcontrib>Dodangeh, Esmaeel ; Ewees, Ahmed A. ; Shahid, Shamsuddin ; Yaseen, Zaher Mundher</creatorcontrib><description>Novel data-intelligence models developed through hybridization of an adaptive neuro-fuzzy inference system (ANFIS) with different metaheuristic algorithms, namely grey wolf optimizer (GWO), particle swarm optimizer (PSO) and whale optimization algorithm (WOA), are proposed for daily river flow prediction of the Taleghan River, which is the major source of potable water for Tehran, the capital of Iran. Gamma test (GT) was used for the determination of input variables for the models. The ANFIS-WOA model was found to exhibit the best performance in prediction of river flow according to root mean square error (RMSE ≈ 3.75 m 3 .s −1 ) and Nash-Sutcliffe efficiency (NSE ≈ 0.93). It improved the prediction performance of the classical ANFIS model by 6.5%. The convergence speed of ANFIS-WOA was also found to be higher compared to other hybrid models. The success of the ANFIS-WOA model indicates its potential for use in the simulation of highly nonlinear daily rainfall-runoff relationships.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2021.1985123</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Adaptive systems ; Algorithms ; ANFIS ; Artificial neural networks ; catchment management ; Daily ; Daily rainfall ; Drinking water ; Flow simulation ; Fuzzy logic ; Heuristic methods ; hybrid model ; Hybridization ; Intelligence ; metaheuristic algorithms ; Modelling ; Optimization ; Performance prediction ; Predictions ; Rain ; Rainfall ; Rainfall runoff ; Rainfall-runoff relationships ; River flow ; river flow prediction ; Rivers ; Root-mean-square errors ; Runoff ; Simulation ; Stream flow ; Swarm intelligence</subject><ispartof>Hydrological sciences journal, 2021-11, Vol.66 (15), p.2155-2169</ispartof><rights>2021 IAHS 2021</rights><rights>2021 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-743092b2c62fd28aa16a5125ba126f729aec2d7d12646b3f14c8781bd30061fa3</citedby><cites>FETCH-LOGICAL-c338t-743092b2c62fd28aa16a5125ba126f729aec2d7d12646b3f14c8781bd30061fa3</cites><orcidid>0000-0001-9621-6452 ; 0000-0003-3647-7137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/02626667.2021.1985123$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/02626667.2021.1985123$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,59647,60436</link.rule.ids></links><search><creatorcontrib>Dodangeh, Esmaeel</creatorcontrib><creatorcontrib>Ewees, Ahmed A.</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><title>Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms</title><title>Hydrological sciences journal</title><description>Novel data-intelligence models developed through hybridization of an adaptive neuro-fuzzy inference system (ANFIS) with different metaheuristic algorithms, namely grey wolf optimizer (GWO), particle swarm optimizer (PSO) and whale optimization algorithm (WOA), are proposed for daily river flow prediction of the Taleghan River, which is the major source of potable water for Tehran, the capital of Iran. Gamma test (GT) was used for the determination of input variables for the models. The ANFIS-WOA model was found to exhibit the best performance in prediction of river flow according to root mean square error (RMSE ≈ 3.75 m 3 .s −1 ) and Nash-Sutcliffe efficiency (NSE ≈ 0.93). It improved the prediction performance of the classical ANFIS model by 6.5%. The convergence speed of ANFIS-WOA was also found to be higher compared to other hybrid models. The success of the ANFIS-WOA model indicates its potential for use in the simulation of highly nonlinear daily rainfall-runoff relationships.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>ANFIS</subject><subject>Artificial neural networks</subject><subject>catchment management</subject><subject>Daily</subject><subject>Daily rainfall</subject><subject>Drinking water</subject><subject>Flow simulation</subject><subject>Fuzzy logic</subject><subject>Heuristic methods</subject><subject>hybrid model</subject><subject>Hybridization</subject><subject>Intelligence</subject><subject>metaheuristic algorithms</subject><subject>Modelling</subject><subject>Optimization</subject><subject>Performance prediction</subject><subject>Predictions</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Rainfall runoff</subject><subject>Rainfall-runoff relationships</subject><subject>River flow</subject><subject>river flow prediction</subject><subject>Rivers</subject><subject>Root-mean-square errors</subject><subject>Runoff</subject><subject>Simulation</subject><subject>Stream flow</subject><subject>Swarm intelligence</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiWWKf4kTgJK1B5SpXYwBJZk9huXTlxsROq9OtJ1bJlNZqZc-9oLkLXlMwoKcgtYYIJIfIZI4zOaFlklPETNGE0IwlPeXaKJnsm2UPn6CLGNSE8LQWfoK9HsG7AsQancbA_OmDj_BZH2_QOOuvbO7waqmCV3WmFTb_bDdj5pa1x45V2eGu7FW50ByvdBxu7cQFu6cM4buIlOjPgor461in6fH76mL8mi_eXt_nDIqk5L7okTzkpWcVqwYxiBQAVMP6QVUCZMDkrQddM5WrsUlFxQ9O6yAtaKU6IoAb4FN0cfDfBf_c6dnLt-9COJyUTJEtZmTI6UtmBqoOPMWgjN8E2EAZJidwnKf-SlPsk5THJUXd_0NnW-NDA1genZAeD88EEaGsbJf_f4hfyH3sQ</recordid><startdate>20211118</startdate><enddate>20211118</enddate><creator>Dodangeh, Esmaeel</creator><creator>Ewees, Ahmed A.</creator><creator>Shahid, Shamsuddin</creator><creator>Yaseen, Zaher Mundher</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-9621-6452</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid></search><sort><creationdate>20211118</creationdate><title>Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms</title><author>Dodangeh, Esmaeel ; Ewees, Ahmed A. ; Shahid, Shamsuddin ; Yaseen, Zaher Mundher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-743092b2c62fd28aa16a5125ba126f729aec2d7d12646b3f14c8781bd30061fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>ANFIS</topic><topic>Artificial neural networks</topic><topic>catchment management</topic><topic>Daily</topic><topic>Daily rainfall</topic><topic>Drinking water</topic><topic>Flow simulation</topic><topic>Fuzzy logic</topic><topic>Heuristic methods</topic><topic>hybrid model</topic><topic>Hybridization</topic><topic>Intelligence</topic><topic>metaheuristic algorithms</topic><topic>Modelling</topic><topic>Optimization</topic><topic>Performance prediction</topic><topic>Predictions</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Rainfall runoff</topic><topic>Rainfall-runoff relationships</topic><topic>River flow</topic><topic>river flow prediction</topic><topic>Rivers</topic><topic>Root-mean-square errors</topic><topic>Runoff</topic><topic>Simulation</topic><topic>Stream flow</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dodangeh, Esmaeel</creatorcontrib><creatorcontrib>Ewees, Ahmed A.</creatorcontrib><creatorcontrib>Shahid, Shamsuddin</creatorcontrib><creatorcontrib>Yaseen, Zaher Mundher</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dodangeh, Esmaeel</au><au>Ewees, Ahmed A.</au><au>Shahid, Shamsuddin</au><au>Yaseen, Zaher Mundher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms</atitle><jtitle>Hydrological sciences journal</jtitle><date>2021-11-18</date><risdate>2021</risdate><volume>66</volume><issue>15</issue><spage>2155</spage><epage>2169</epage><pages>2155-2169</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>Novel data-intelligence models developed through hybridization of an adaptive neuro-fuzzy inference system (ANFIS) with different metaheuristic algorithms, namely grey wolf optimizer (GWO), particle swarm optimizer (PSO) and whale optimization algorithm (WOA), are proposed for daily river flow prediction of the Taleghan River, which is the major source of potable water for Tehran, the capital of Iran. Gamma test (GT) was used for the determination of input variables for the models. The ANFIS-WOA model was found to exhibit the best performance in prediction of river flow according to root mean square error (RMSE ≈ 3.75 m 3 .s −1 ) and Nash-Sutcliffe efficiency (NSE ≈ 0.93). It improved the prediction performance of the classical ANFIS model by 6.5%. The convergence speed of ANFIS-WOA was also found to be higher compared to other hybrid models. The success of the ANFIS-WOA model indicates its potential for use in the simulation of highly nonlinear daily rainfall-runoff relationships.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02626667.2021.1985123</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9621-6452</orcidid><orcidid>https://orcid.org/0000-0003-3647-7137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2021-11, Vol.66 (15), p.2155-2169
issn 0262-6667
2150-3435
language eng
recordid cdi_proquest_journals_2605429421
source Alma/SFX Local Collection; Taylor & Francis Current Content Access
subjects Adaptive systems
Algorithms
ANFIS
Artificial neural networks
catchment management
Daily
Daily rainfall
Drinking water
Flow simulation
Fuzzy logic
Heuristic methods
hybrid model
Hybridization
Intelligence
metaheuristic algorithms
Modelling
Optimization
Performance prediction
Predictions
Rain
Rainfall
Rainfall runoff
Rainfall-runoff relationships
River flow
river flow prediction
Rivers
Root-mean-square errors
Runoff
Simulation
Stream flow
Swarm intelligence
title Daily scale river flow simulation: hybridized fuzzy logic model with metaheuristic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Daily%20scale%20river%20flow%20simulation:%20hybridized%20fuzzy%20logic%20model%20with%20metaheuristic%20algorithms&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Dodangeh,%20Esmaeel&rft.date=2021-11-18&rft.volume=66&rft.issue=15&rft.spage=2155&rft.epage=2169&rft.pages=2155-2169&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2021.1985123&rft_dat=%3Cproquest_cross%3E2605429421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605429421&rft_id=info:pmid/&rfr_iscdi=true