E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor
KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit,...
Gespeichert in:
Veröffentlicht in: | Oncogene 2021-12, Vol.40 (48), p.6614-6626 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6626 |
---|---|
container_issue | 48 |
container_start_page | 6614 |
container_title | Oncogene |
container_volume | 40 |
creator | García-Valverde, Alfonso Rosell, Jordi Sayols, Sergi Gómez-Peregrina, David Pilco-Janeta, Daniel F. Olivares-Rivas, Iván de Álava, Enrique Maurel, Joan Rubió-Casadevall, Jordi Esteve, Anna Gut, Marta Valverde, Claudia Barretina, Jordi Carles, Joan Demetri, George D. Fletcher, Jonathan A. Arribas, Joaquín Serrano, César |
description | KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients’ samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)—the main effector of muscular atrophy in cachexia—resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment. |
doi_str_mv | 10.1038/s41388-021-02049-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2605422972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684673609</galeid><sourcerecordid>A684673609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-fcfa4733a3c1fb5dad9c0f71f82f1abe09e3ff82524bdd1aa21577867db802b33</originalsourceid><addsrcrecordid>eNp9UU1rFTEUDaLY1-ofcCEB16n5mslk-ShtLS24qeuQyceY8ibzmmQU_723fdUiSAnh3pucczjJQegDo6eMiuFzlUwMA6GcwaZSE_oKbZhUPek6LV-jDdUdJZoLfoSOa72jlCpN-Vt0JGTPGXA26Oe5wOuY7tfUUsa7NNka8LaVZUqZMDwHn2wLFVtv9y39CLiEmmqz2QXcFnx9dUuaLVNoweOUv6cRdJYMLQYlkEkZ2CBtd_hhnKG2dV7KO_Qm2l0N75_qCfp2cX579oXcfL28OtveECclbyS6aKUSwgrH4th567WjUbE48MjsGKgOIsLQcTl6z6zlrFNq6JUfB8pHIU7Qp4Puviz3K1gxd8tawE41vKed5Fwr_oya7C6YlOPSinVzqs5s-0H2SvRUA-r0PyhYPszJLTnEBOf_EPiB4MpSawnR7EuabfllGDUPEZpDhAYiNI8RGgqkj0-O1xG-_y_lT2YAEAdAhas8hfL8pBdkfwNEm6dj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605422972</pqid></control><display><type>article</type><title>E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>García-Valverde, Alfonso ; Rosell, Jordi ; Sayols, Sergi ; Gómez-Peregrina, David ; Pilco-Janeta, Daniel F. ; Olivares-Rivas, Iván ; de Álava, Enrique ; Maurel, Joan ; Rubió-Casadevall, Jordi ; Esteve, Anna ; Gut, Marta ; Valverde, Claudia ; Barretina, Jordi ; Carles, Joan ; Demetri, George D. ; Fletcher, Jonathan A. ; Arribas, Joaquín ; Serrano, César</creator><creatorcontrib>García-Valverde, Alfonso ; Rosell, Jordi ; Sayols, Sergi ; Gómez-Peregrina, David ; Pilco-Janeta, Daniel F. ; Olivares-Rivas, Iván ; de Álava, Enrique ; Maurel, Joan ; Rubió-Casadevall, Jordi ; Esteve, Anna ; Gut, Marta ; Valverde, Claudia ; Barretina, Jordi ; Carles, Joan ; Demetri, George D. ; Fletcher, Jonathan A. ; Arribas, Joaquín ; Serrano, César</creatorcontrib><description>KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients’ samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)—the main effector of muscular atrophy in cachexia—resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment.</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/s41388-021-02049-0</identifier><identifier>PMID: 34621020</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/105 ; 13/106 ; 13/109 ; 13/2 ; 13/31 ; 13/95 ; 14/34 ; 38/1 ; 38/61 ; 38/91 ; 42/41 ; 631/337/641/151 ; 631/67/1059/2326 ; 631/67/1059/602 ; 631/67/1798 ; 631/80/86/2368 ; 64/60 ; 82/29 ; 82/51 ; 82/80 ; 96/63 ; Adaptation ; Analysis ; Animals ; Antimitotic agents ; Antineoplastic agents ; Antineoplastic Agents - pharmacology ; Apoptosis ; Atrophy ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cachexia ; Cancer ; Care and treatment ; Cell Biology ; Cell growth ; Cell Proliferation ; Cell survival ; Diagnosis ; Dosage and administration ; Drug Resistance, Neoplasm - drug effects ; Drug Therapy, Combination ; FOXO3 protein ; Gastrointestinal cancer ; Gastrointestinal Neoplasms - drug therapy ; Gastrointestinal Neoplasms - metabolism ; Gastrointestinal Neoplasms - pathology ; Gastrointestinal Stromal Tumors - drug therapy ; Gastrointestinal Stromal Tumors - metabolism ; Gastrointestinal Stromal Tumors - pathology ; Gastrointestinal tumors ; Gene Expression Regulation, Neoplastic - drug effects ; Hospitals ; Human Genetics ; Humans ; Imatinib ; Imatinib Mesylate - pharmacology ; Internal Medicine ; Kinases ; Laboratories ; Medicine ; Medicine & Public Health ; Mesenchyme ; Mice ; Muscle Proteins - antagonists & inhibitors ; Mutation ; Oncology ; Protein-tyrosine kinase ; Proto-Oncogene Proteins c-kit - antagonists & inhibitors ; Pyrazoles - pharmacology ; Pyrimidines - pharmacology ; Risk factors ; SKP Cullin F-Box Protein Ligases - antagonists & inhibitors ; Sulfides - pharmacology ; Sulfonamides - pharmacology ; Transcription ; Tumor Cells, Cultured ; Tumors ; Ubiquitin ; Ubiquitin-protein ligase ; Xenograft Model Antitumor Assays</subject><ispartof>Oncogene, 2021-12, Vol.40 (48), p.6614-6626</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-fcfa4733a3c1fb5dad9c0f71f82f1abe09e3ff82524bdd1aa21577867db802b33</citedby><cites>FETCH-LOGICAL-c442t-fcfa4733a3c1fb5dad9c0f71f82f1abe09e3ff82524bdd1aa21577867db802b33</cites><orcidid>0000-0002-3877-4170 ; 0000-0003-3640-0498 ; 0000-0002-0504-0664 ; 0000-0003-1416-8739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41388-021-02049-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41388-021-02049-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34621020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>García-Valverde, Alfonso</creatorcontrib><creatorcontrib>Rosell, Jordi</creatorcontrib><creatorcontrib>Sayols, Sergi</creatorcontrib><creatorcontrib>Gómez-Peregrina, David</creatorcontrib><creatorcontrib>Pilco-Janeta, Daniel F.</creatorcontrib><creatorcontrib>Olivares-Rivas, Iván</creatorcontrib><creatorcontrib>de Álava, Enrique</creatorcontrib><creatorcontrib>Maurel, Joan</creatorcontrib><creatorcontrib>Rubió-Casadevall, Jordi</creatorcontrib><creatorcontrib>Esteve, Anna</creatorcontrib><creatorcontrib>Gut, Marta</creatorcontrib><creatorcontrib>Valverde, Claudia</creatorcontrib><creatorcontrib>Barretina, Jordi</creatorcontrib><creatorcontrib>Carles, Joan</creatorcontrib><creatorcontrib>Demetri, George D.</creatorcontrib><creatorcontrib>Fletcher, Jonathan A.</creatorcontrib><creatorcontrib>Arribas, Joaquín</creatorcontrib><creatorcontrib>Serrano, César</creatorcontrib><title>E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients’ samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)—the main effector of muscular atrophy in cachexia—resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment.</description><subject>13/105</subject><subject>13/106</subject><subject>13/109</subject><subject>13/2</subject><subject>13/31</subject><subject>13/95</subject><subject>14/34</subject><subject>38/1</subject><subject>38/61</subject><subject>38/91</subject><subject>42/41</subject><subject>631/337/641/151</subject><subject>631/67/1059/2326</subject><subject>631/67/1059/602</subject><subject>631/67/1798</subject><subject>631/80/86/2368</subject><subject>64/60</subject><subject>82/29</subject><subject>82/51</subject><subject>82/80</subject><subject>96/63</subject><subject>Adaptation</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antimitotic agents</subject><subject>Antineoplastic agents</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis</subject><subject>Atrophy</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cachexia</subject><subject>Cancer</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell growth</subject><subject>Cell Proliferation</subject><subject>Cell survival</subject><subject>Diagnosis</subject><subject>Dosage and administration</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Therapy, Combination</subject><subject>FOXO3 protein</subject><subject>Gastrointestinal cancer</subject><subject>Gastrointestinal Neoplasms - drug therapy</subject><subject>Gastrointestinal Neoplasms - metabolism</subject><subject>Gastrointestinal Neoplasms - pathology</subject><subject>Gastrointestinal Stromal Tumors - drug therapy</subject><subject>Gastrointestinal Stromal Tumors - metabolism</subject><subject>Gastrointestinal Stromal Tumors - pathology</subject><subject>Gastrointestinal tumors</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Hospitals</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Imatinib</subject><subject>Imatinib Mesylate - pharmacology</subject><subject>Internal Medicine</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mesenchyme</subject><subject>Mice</subject><subject>Muscle Proteins - antagonists & inhibitors</subject><subject>Mutation</subject><subject>Oncology</subject><subject>Protein-tyrosine kinase</subject><subject>Proto-Oncogene Proteins c-kit - antagonists & inhibitors</subject><subject>Pyrazoles - pharmacology</subject><subject>Pyrimidines - pharmacology</subject><subject>Risk factors</subject><subject>SKP Cullin F-Box Protein Ligases - antagonists & inhibitors</subject><subject>Sulfides - pharmacology</subject><subject>Sulfonamides - pharmacology</subject><subject>Transcription</subject><subject>Tumor Cells, Cultured</subject><subject>Tumors</subject><subject>Ubiquitin</subject><subject>Ubiquitin-protein ligase</subject><subject>Xenograft Model Antitumor Assays</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UU1rFTEUDaLY1-ofcCEB16n5mslk-ShtLS24qeuQyceY8ibzmmQU_723fdUiSAnh3pucczjJQegDo6eMiuFzlUwMA6GcwaZSE_oKbZhUPek6LV-jDdUdJZoLfoSOa72jlCpN-Vt0JGTPGXA26Oe5wOuY7tfUUsa7NNka8LaVZUqZMDwHn2wLFVtv9y39CLiEmmqz2QXcFnx9dUuaLVNoweOUv6cRdJYMLQYlkEkZ2CBtd_hhnKG2dV7KO_Qm2l0N75_qCfp2cX579oXcfL28OtveECclbyS6aKUSwgrH4th567WjUbE48MjsGKgOIsLQcTl6z6zlrFNq6JUfB8pHIU7Qp4Puviz3K1gxd8tawE41vKed5Fwr_oya7C6YlOPSinVzqs5s-0H2SvRUA-r0PyhYPszJLTnEBOf_EPiB4MpSawnR7EuabfllGDUPEZpDhAYiNI8RGgqkj0-O1xG-_y_lT2YAEAdAhas8hfL8pBdkfwNEm6dj</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>García-Valverde, Alfonso</creator><creator>Rosell, Jordi</creator><creator>Sayols, Sergi</creator><creator>Gómez-Peregrina, David</creator><creator>Pilco-Janeta, Daniel F.</creator><creator>Olivares-Rivas, Iván</creator><creator>de Álava, Enrique</creator><creator>Maurel, Joan</creator><creator>Rubió-Casadevall, Jordi</creator><creator>Esteve, Anna</creator><creator>Gut, Marta</creator><creator>Valverde, Claudia</creator><creator>Barretina, Jordi</creator><creator>Carles, Joan</creator><creator>Demetri, George D.</creator><creator>Fletcher, Jonathan A.</creator><creator>Arribas, Joaquín</creator><creator>Serrano, César</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-3877-4170</orcidid><orcidid>https://orcid.org/0000-0003-3640-0498</orcidid><orcidid>https://orcid.org/0000-0002-0504-0664</orcidid><orcidid>https://orcid.org/0000-0003-1416-8739</orcidid></search><sort><creationdate>20211202</creationdate><title>E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor</title><author>García-Valverde, Alfonso ; Rosell, Jordi ; Sayols, Sergi ; Gómez-Peregrina, David ; Pilco-Janeta, Daniel F. ; Olivares-Rivas, Iván ; de Álava, Enrique ; Maurel, Joan ; Rubió-Casadevall, Jordi ; Esteve, Anna ; Gut, Marta ; Valverde, Claudia ; Barretina, Jordi ; Carles, Joan ; Demetri, George D. ; Fletcher, Jonathan A. ; Arribas, Joaquín ; Serrano, César</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-fcfa4733a3c1fb5dad9c0f71f82f1abe09e3ff82524bdd1aa21577867db802b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/105</topic><topic>13/106</topic><topic>13/109</topic><topic>13/2</topic><topic>13/31</topic><topic>13/95</topic><topic>14/34</topic><topic>38/1</topic><topic>38/61</topic><topic>38/91</topic><topic>42/41</topic><topic>631/337/641/151</topic><topic>631/67/1059/2326</topic><topic>631/67/1059/602</topic><topic>631/67/1798</topic><topic>631/80/86/2368</topic><topic>64/60</topic><topic>82/29</topic><topic>82/51</topic><topic>82/80</topic><topic>96/63</topic><topic>Adaptation</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antimitotic agents</topic><topic>Antineoplastic agents</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis</topic><topic>Atrophy</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cachexia</topic><topic>Cancer</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell growth</topic><topic>Cell Proliferation</topic><topic>Cell survival</topic><topic>Diagnosis</topic><topic>Dosage and administration</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Therapy, Combination</topic><topic>FOXO3 protein</topic><topic>Gastrointestinal cancer</topic><topic>Gastrointestinal Neoplasms - drug therapy</topic><topic>Gastrointestinal Neoplasms - metabolism</topic><topic>Gastrointestinal Neoplasms - pathology</topic><topic>Gastrointestinal Stromal Tumors - drug therapy</topic><topic>Gastrointestinal Stromal Tumors - metabolism</topic><topic>Gastrointestinal Stromal Tumors - pathology</topic><topic>Gastrointestinal tumors</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Hospitals</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Imatinib</topic><topic>Imatinib Mesylate - pharmacology</topic><topic>Internal Medicine</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mesenchyme</topic><topic>Mice</topic><topic>Muscle Proteins - antagonists & inhibitors</topic><topic>Mutation</topic><topic>Oncology</topic><topic>Protein-tyrosine kinase</topic><topic>Proto-Oncogene Proteins c-kit - antagonists & inhibitors</topic><topic>Pyrazoles - pharmacology</topic><topic>Pyrimidines - pharmacology</topic><topic>Risk factors</topic><topic>SKP Cullin F-Box Protein Ligases - antagonists & inhibitors</topic><topic>Sulfides - pharmacology</topic><topic>Sulfonamides - pharmacology</topic><topic>Transcription</topic><topic>Tumor Cells, Cultured</topic><topic>Tumors</topic><topic>Ubiquitin</topic><topic>Ubiquitin-protein ligase</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-Valverde, Alfonso</creatorcontrib><creatorcontrib>Rosell, Jordi</creatorcontrib><creatorcontrib>Sayols, Sergi</creatorcontrib><creatorcontrib>Gómez-Peregrina, David</creatorcontrib><creatorcontrib>Pilco-Janeta, Daniel F.</creatorcontrib><creatorcontrib>Olivares-Rivas, Iván</creatorcontrib><creatorcontrib>de Álava, Enrique</creatorcontrib><creatorcontrib>Maurel, Joan</creatorcontrib><creatorcontrib>Rubió-Casadevall, Jordi</creatorcontrib><creatorcontrib>Esteve, Anna</creatorcontrib><creatorcontrib>Gut, Marta</creatorcontrib><creatorcontrib>Valverde, Claudia</creatorcontrib><creatorcontrib>Barretina, Jordi</creatorcontrib><creatorcontrib>Carles, Joan</creatorcontrib><creatorcontrib>Demetri, George D.</creatorcontrib><creatorcontrib>Fletcher, Jonathan A.</creatorcontrib><creatorcontrib>Arribas, Joaquín</creatorcontrib><creatorcontrib>Serrano, César</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-Valverde, Alfonso</au><au>Rosell, Jordi</au><au>Sayols, Sergi</au><au>Gómez-Peregrina, David</au><au>Pilco-Janeta, Daniel F.</au><au>Olivares-Rivas, Iván</au><au>de Álava, Enrique</au><au>Maurel, Joan</au><au>Rubió-Casadevall, Jordi</au><au>Esteve, Anna</au><au>Gut, Marta</au><au>Valverde, Claudia</au><au>Barretina, Jordi</au><au>Carles, Joan</au><au>Demetri, George D.</au><au>Fletcher, Jonathan A.</au><au>Arribas, Joaquín</au><au>Serrano, César</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2021-12-02</date><risdate>2021</risdate><volume>40</volume><issue>48</issue><spage>6614</spage><epage>6626</epage><pages>6614-6626</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><abstract>KIT/PDGFRA oncogenic tyrosine kinase signaling is the central oncogenic event in most gastrointestinal stromal tumors (GIST), which are human malignant mesenchymal neoplasms that often feature myogenic differentiation. Although targeted inhibition of KIT/PDGFRA provides substantial clinical benefit, GIST cells adapt to KIT/PDGFRA driver suppression and eventually develop resistance. The specific molecular events leading to adaptive resistance in GIST remain unclear. By using clinically representative in vitro and in vivo GIST models and GIST patients’ samples, we found that the E3 ubiquitin ligase Atrogin-1 (FBXO32)—the main effector of muscular atrophy in cachexia—resulted in the most critical gene derepressed in response to KIT inhibition, regardless the type of KIT primary or secondary mutation. Atrogin-1 in GISTs is transcriptionally controlled by the KIT-FOXO3a axis, thus indicating overlap with Atrogin-1 regulation mechanisms in nonneoplastic muscle cells. Further, Atrogin-1 overexpression was a GIST-cell-specific pro-survival mechanism that enabled the adaptation to KIT-targeted inhibition by apoptosis evasion through cell quiescence. Buttressed on these findings, we established in vitro and in vivo the preclinical proof-of-concept for co-targeting KIT and the ubiquitin pathway to maximize the therapeutic response to first-line imatinib treatment.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34621020</pmid><doi>10.1038/s41388-021-02049-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3877-4170</orcidid><orcidid>https://orcid.org/0000-0003-3640-0498</orcidid><orcidid>https://orcid.org/0000-0002-0504-0664</orcidid><orcidid>https://orcid.org/0000-0003-1416-8739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-9232 |
ispartof | Oncogene, 2021-12, Vol.40 (48), p.6614-6626 |
issn | 0950-9232 1476-5594 |
language | eng |
recordid | cdi_proquest_journals_2605422972 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | 13/105 13/106 13/109 13/2 13/31 13/95 14/34 38/1 38/61 38/91 42/41 631/337/641/151 631/67/1059/2326 631/67/1059/602 631/67/1798 631/80/86/2368 64/60 82/29 82/51 82/80 96/63 Adaptation Analysis Animals Antimitotic agents Antineoplastic agents Antineoplastic Agents - pharmacology Apoptosis Atrophy Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Cachexia Cancer Care and treatment Cell Biology Cell growth Cell Proliferation Cell survival Diagnosis Dosage and administration Drug Resistance, Neoplasm - drug effects Drug Therapy, Combination FOXO3 protein Gastrointestinal cancer Gastrointestinal Neoplasms - drug therapy Gastrointestinal Neoplasms - metabolism Gastrointestinal Neoplasms - pathology Gastrointestinal Stromal Tumors - drug therapy Gastrointestinal Stromal Tumors - metabolism Gastrointestinal Stromal Tumors - pathology Gastrointestinal tumors Gene Expression Regulation, Neoplastic - drug effects Hospitals Human Genetics Humans Imatinib Imatinib Mesylate - pharmacology Internal Medicine Kinases Laboratories Medicine Medicine & Public Health Mesenchyme Mice Muscle Proteins - antagonists & inhibitors Mutation Oncology Protein-tyrosine kinase Proto-Oncogene Proteins c-kit - antagonists & inhibitors Pyrazoles - pharmacology Pyrimidines - pharmacology Risk factors SKP Cullin F-Box Protein Ligases - antagonists & inhibitors Sulfides - pharmacology Sulfonamides - pharmacology Transcription Tumor Cells, Cultured Tumors Ubiquitin Ubiquitin-protein ligase Xenograft Model Antitumor Assays |
title | E3 ubiquitin ligase Atrogin-1 mediates adaptive resistance to KIT-targeted inhibition in gastrointestinal stromal tumor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E3%20ubiquitin%20ligase%20Atrogin-1%20mediates%20adaptive%20resistance%20to%20KIT-targeted%20inhibition%20in%20gastrointestinal%20stromal%20tumor&rft.jtitle=Oncogene&rft.au=Garc%C3%ADa-Valverde,%20Alfonso&rft.date=2021-12-02&rft.volume=40&rft.issue=48&rft.spage=6614&rft.epage=6626&rft.pages=6614-6626&rft.issn=0950-9232&rft.eissn=1476-5594&rft_id=info:doi/10.1038/s41388-021-02049-0&rft_dat=%3Cgale_proqu%3EA684673609%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605422972&rft_id=info:pmid/34621020&rft_galeid=A684673609&rfr_iscdi=true |