Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations

In this paper, we will give the first result concerning the non-uniform dependence on initial data for the 2D magnetohydrodynamics (MHD)-Boussinesq equations as a hyperbolic-parabolic system. More precisely, we prove that the data-to-solution map of the Cauchy problem to the 2D MHD-Boussinesq equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-12, Vol.62 (12)
Hauptverfasser: Yu, Yanghai, Yang, Xiaolei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Yu, Yanghai
Yang, Xiaolei
description In this paper, we will give the first result concerning the non-uniform dependence on initial data for the 2D magnetohydrodynamics (MHD)-Boussinesq equations as a hyperbolic-parabolic system. More precisely, we prove that the data-to-solution map of the Cauchy problem to the 2D MHD-Boussinesq equations is not uniformly continuous in Hs with s > 2.
doi_str_mv 10.1063/5.0060974
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2605397199</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605397199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-307c5f5905ed6633f5b77f053d7b6d21a438c754c470714ffed99eda16d583173</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmkz-l9qqVapudB3SSYIpbTJNZgTf3tEW3Lu6i_txLvcAcI7RBCNOrtkEIY6UoAdghJFUleBMHoIRQnVd1VTKY3BSygohjCWlI_D0kmLVx-BT3kDrWheti42DKcIQQxfMGlrTGTjsYffhYD2Dz_NZdZv6UkJ0ZQvdtjddSLGcgiNv1sWd7ecYvN_fvU3n1eL14XF6s6gaUouuIkg0zDOFmLOcE-LZUgiPGLFiyW2NDSWyEYw2VCCBqffOKuWswdwySbAgY3Cxy21z2vaudHqV-hyHk7rmQ44SWKlBXe5Uk1Mp2Xnd5rAx-UtjpH-q0kzvqxrs1c6WJnS_z_wPf6b8B3VrPfkGnCx1cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605397199</pqid></control><display><type>article</type><title>Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Yu, Yanghai ; Yang, Xiaolei</creator><creatorcontrib>Yu, Yanghai ; Yang, Xiaolei</creatorcontrib><description>In this paper, we will give the first result concerning the non-uniform dependence on initial data for the 2D magnetohydrodynamics (MHD)-Boussinesq equations as a hyperbolic-parabolic system. More precisely, we prove that the data-to-solution map of the Cauchy problem to the 2D MHD-Boussinesq equations is not uniformly continuous in Hs with s &gt; 2.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0060974</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boussinesq equations ; Cauchy problems ; Magnetohydrodynamics ; Mathematical analysis ; Physics</subject><ispartof>Journal of mathematical physics, 2021-12, Vol.62 (12)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-307c5f5905ed6633f5b77f053d7b6d21a438c754c470714ffed99eda16d583173</citedby><cites>FETCH-LOGICAL-c327t-307c5f5905ed6633f5b77f053d7b6d21a438c754c470714ffed99eda16d583173</cites><orcidid>0000-0002-6322-6993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0060974$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27903,27904,76129</link.rule.ids></links><search><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Yang, Xiaolei</creatorcontrib><title>Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations</title><title>Journal of mathematical physics</title><description>In this paper, we will give the first result concerning the non-uniform dependence on initial data for the 2D magnetohydrodynamics (MHD)-Boussinesq equations as a hyperbolic-parabolic system. More precisely, we prove that the data-to-solution map of the Cauchy problem to the 2D MHD-Boussinesq equations is not uniformly continuous in Hs with s &gt; 2.</description><subject>Boussinesq equations</subject><subject>Cauchy problems</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmkz-l9qqVapudB3SSYIpbTJNZgTf3tEW3Lu6i_txLvcAcI7RBCNOrtkEIY6UoAdghJFUleBMHoIRQnVd1VTKY3BSygohjCWlI_D0kmLVx-BT3kDrWheti42DKcIQQxfMGlrTGTjsYffhYD2Dz_NZdZv6UkJ0ZQvdtjddSLGcgiNv1sWd7ecYvN_fvU3n1eL14XF6s6gaUouuIkg0zDOFmLOcE-LZUgiPGLFiyW2NDSWyEYw2VCCBqffOKuWswdwySbAgY3Cxy21z2vaudHqV-hyHk7rmQ44SWKlBXe5Uk1Mp2Xnd5rAx-UtjpH-q0kzvqxrs1c6WJnS_z_wPf6b8B3VrPfkGnCx1cg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yu, Yanghai</creator><creator>Yang, Xiaolei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6322-6993</orcidid></search><sort><creationdate>20211201</creationdate><title>Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations</title><author>Yu, Yanghai ; Yang, Xiaolei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-307c5f5905ed6633f5b77f053d7b6d21a438c754c470714ffed99eda16d583173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Boussinesq equations</topic><topic>Cauchy problems</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Yanghai</creatorcontrib><creatorcontrib>Yang, Xiaolei</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Yanghai</au><au>Yang, Xiaolei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we will give the first result concerning the non-uniform dependence on initial data for the 2D magnetohydrodynamics (MHD)-Boussinesq equations as a hyperbolic-parabolic system. More precisely, we prove that the data-to-solution map of the Cauchy problem to the 2D MHD-Boussinesq equations is not uniformly continuous in Hs with s &gt; 2.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0060974</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6322-6993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-12, Vol.62 (12)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2605397199
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boussinesq equations
Cauchy problems
Magnetohydrodynamics
Mathematical analysis
Physics
title Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-uniform%20dependence%20on%20initial%20data%20for%20the%202D%20MHD-Boussinesq%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Yu,%20Yanghai&rft.date=2021-12-01&rft.volume=62&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0060974&rft_dat=%3Cproquest_scita%3E2605397199%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605397199&rft_id=info:pmid/&rfr_iscdi=true