Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials
We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (N...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-12, Vol.9 (46), p.16523-16535 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16535 |
---|---|
container_issue | 46 |
container_start_page | 16523 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 9 |
creator | Shamraienko, Volodymyr Spittel, Daniel Hübner, René Samadi Khoshkhoo, Mahdi Weiß, Nelli Georgi, Maximilian Borchert, Konstantin B. L Schwarz, Dana Lesnyak, Vladimir Eychmüller, Alexander |
description | We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb
2+
, Hg
2+
, Zn
2+
, or Sn
4+
). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri-
n
-octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics.
Up to 5 μm large
ca.
5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized
via
cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials. |
doi_str_mv | 10.1039/d1tc04815e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605338293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605338293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouOhevAsBb0I1H03aeJO6fsCCl_Vc0mTqdmmbmmRR_3ujKyvOYeYdfu8xPITOKLmihKtrS6MheUkFHKAZI4JkheD54V4zeYzmIWxImpLKUqoZmiodOzdi-DBrPb4CTtq4vned1X1S0wQeB-hh7CzgUY8urAFiuMEae7eNgKPD8d1lthtgDCkq2QaIaf9zDTqC73QfTtFRmw7Mf-8JerlfrKrHbPn88FTdLjPDShozofJSsYIK0VolWUNpoww3JbOMSgllywstlWi4aGxjpJWFosLkjOVEJQvhJ-hilzt597aFEOuN2_r0XaiZJILzkimeqMsdZbwLwUNbT74btP-sKam_S63v6Kr6KXWR4PMd7IPZc3-l8y_4anQj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605338293</pqid></control><display><type>article</type><title>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shamraienko, Volodymyr ; Spittel, Daniel ; Hübner, René ; Samadi Khoshkhoo, Mahdi ; Weiß, Nelli ; Georgi, Maximilian ; Borchert, Konstantin B. L ; Schwarz, Dana ; Lesnyak, Vladimir ; Eychmüller, Alexander</creator><creatorcontrib>Shamraienko, Volodymyr ; Spittel, Daniel ; Hübner, René ; Samadi Khoshkhoo, Mahdi ; Weiß, Nelli ; Georgi, Maximilian ; Borchert, Konstantin B. L ; Schwarz, Dana ; Lesnyak, Vladimir ; Eychmüller, Alexander</creatorcontrib><description>We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb
2+
, Hg
2+
, Zn
2+
, or Sn
4+
). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri-
n
-octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics.
Up to 5 μm large
ca.
5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized
via
cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d1tc04815e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cation exchanging ; Coated electrodes ; Copper ; Copper selenides ; Copper zinc tin selenide ; Crystal structure ; Electronic devices ; Lead selenides ; Mercury compounds ; Micrometers ; Nanomaterials ; Nanosheets ; Organic chemistry ; Photovoltaic cells ; Reaction time ; Selenides ; Selenium ; Thin films</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-12, Vol.9 (46), p.16523-16535</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</citedby><cites>FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</cites><orcidid>0000-0001-9926-6279 ; 0000-0003-0533-4782 ; 0000-0002-2480-8755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shamraienko, Volodymyr</creatorcontrib><creatorcontrib>Spittel, Daniel</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Samadi Khoshkhoo, Mahdi</creatorcontrib><creatorcontrib>Weiß, Nelli</creatorcontrib><creatorcontrib>Georgi, Maximilian</creatorcontrib><creatorcontrib>Borchert, Konstantin B. L</creatorcontrib><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Lesnyak, Vladimir</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><title>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb
2+
, Hg
2+
, Zn
2+
, or Sn
4+
). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri-
n
-octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics.
Up to 5 μm large
ca.
5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized
via
cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials.</description><subject>Cation exchanging</subject><subject>Coated electrodes</subject><subject>Copper</subject><subject>Copper selenides</subject><subject>Copper zinc tin selenide</subject><subject>Crystal structure</subject><subject>Electronic devices</subject><subject>Lead selenides</subject><subject>Mercury compounds</subject><subject>Micrometers</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Reaction time</subject><subject>Selenides</subject><subject>Selenium</subject><subject>Thin films</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LxDAQxYMouOhevAsBb0I1H03aeJO6fsCCl_Vc0mTqdmmbmmRR_3ujKyvOYeYdfu8xPITOKLmihKtrS6MheUkFHKAZI4JkheD54V4zeYzmIWxImpLKUqoZmiodOzdi-DBrPb4CTtq4vned1X1S0wQeB-hh7CzgUY8urAFiuMEae7eNgKPD8d1lthtgDCkq2QaIaf9zDTqC73QfTtFRmw7Mf-8JerlfrKrHbPn88FTdLjPDShozofJSsYIK0VolWUNpoww3JbOMSgllywstlWi4aGxjpJWFosLkjOVEJQvhJ-hilzt597aFEOuN2_r0XaiZJILzkimeqMsdZbwLwUNbT74btP-sKam_S63v6Kr6KXWR4PMd7IPZc3-l8y_4anQj</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Shamraienko, Volodymyr</creator><creator>Spittel, Daniel</creator><creator>Hübner, René</creator><creator>Samadi Khoshkhoo, Mahdi</creator><creator>Weiß, Nelli</creator><creator>Georgi, Maximilian</creator><creator>Borchert, Konstantin B. L</creator><creator>Schwarz, Dana</creator><creator>Lesnyak, Vladimir</creator><creator>Eychmüller, Alexander</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9926-6279</orcidid><orcidid>https://orcid.org/0000-0003-0533-4782</orcidid><orcidid>https://orcid.org/0000-0002-2480-8755</orcidid></search><sort><creationdate>20211202</creationdate><title>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</title><author>Shamraienko, Volodymyr ; Spittel, Daniel ; Hübner, René ; Samadi Khoshkhoo, Mahdi ; Weiß, Nelli ; Georgi, Maximilian ; Borchert, Konstantin B. L ; Schwarz, Dana ; Lesnyak, Vladimir ; Eychmüller, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cation exchanging</topic><topic>Coated electrodes</topic><topic>Copper</topic><topic>Copper selenides</topic><topic>Copper zinc tin selenide</topic><topic>Crystal structure</topic><topic>Electronic devices</topic><topic>Lead selenides</topic><topic>Mercury compounds</topic><topic>Micrometers</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Reaction time</topic><topic>Selenides</topic><topic>Selenium</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamraienko, Volodymyr</creatorcontrib><creatorcontrib>Spittel, Daniel</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Samadi Khoshkhoo, Mahdi</creatorcontrib><creatorcontrib>Weiß, Nelli</creatorcontrib><creatorcontrib>Georgi, Maximilian</creatorcontrib><creatorcontrib>Borchert, Konstantin B. L</creatorcontrib><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Lesnyak, Vladimir</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamraienko, Volodymyr</au><au>Spittel, Daniel</au><au>Hübner, René</au><au>Samadi Khoshkhoo, Mahdi</au><au>Weiß, Nelli</au><au>Georgi, Maximilian</au><au>Borchert, Konstantin B. L</au><au>Schwarz, Dana</au><au>Lesnyak, Vladimir</au><au>Eychmüller, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-12-02</date><risdate>2021</risdate><volume>9</volume><issue>46</issue><spage>16523</spage><epage>16535</epage><pages>16523-16535</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb
2+
, Hg
2+
, Zn
2+
, or Sn
4+
). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri-
n
-octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics.
Up to 5 μm large
ca.
5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized
via
cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tc04815e</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9926-6279</orcidid><orcidid>https://orcid.org/0000-0003-0533-4782</orcidid><orcidid>https://orcid.org/0000-0002-2480-8755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-12, Vol.9 (46), p.16523-16535 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_2605338293 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Cation exchanging Coated electrodes Copper Copper selenides Copper zinc tin selenide Crystal structure Electronic devices Lead selenides Mercury compounds Micrometers Nanomaterials Nanosheets Organic chemistry Photovoltaic cells Reaction time Selenides Selenium Thin films |
title | Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%20exchange%20on%20colloidal%20copper%20selenide%20nanosheets:%20a%20route%20to%20two-dimensional%20metal%20selenide%20nanomaterials&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Shamraienko,%20Volodymyr&rft.date=2021-12-02&rft.volume=9&rft.issue=46&rft.spage=16523&rft.epage=16535&rft.pages=16523-16535&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d1tc04815e&rft_dat=%3Cproquest_cross%3E2605338293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605338293&rft_id=info:pmid/&rfr_iscdi=true |