Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials

We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2021-12, Vol.9 (46), p.16523-16535
Hauptverfasser: Shamraienko, Volodymyr, Spittel, Daniel, Hübner, René, Samadi Khoshkhoo, Mahdi, Weiß, Nelli, Georgi, Maximilian, Borchert, Konstantin B. L, Schwarz, Dana, Lesnyak, Vladimir, Eychmüller, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16535
container_issue 46
container_start_page 16523
container_title Journal of materials chemistry. C, Materials for optical and electronic devices
container_volume 9
creator Shamraienko, Volodymyr
Spittel, Daniel
Hübner, René
Samadi Khoshkhoo, Mahdi
Weiß, Nelli
Georgi, Maximilian
Borchert, Konstantin B. L
Schwarz, Dana
Lesnyak, Vladimir
Eychmüller, Alexander
description We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb 2+ , Hg 2+ , Zn 2+ , or Sn 4+ ). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri- n -octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics. Up to 5 μm large ca. 5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized via cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials.
doi_str_mv 10.1039/d1tc04815e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2605338293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605338293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouOhevAsBb0I1H03aeJO6fsCCl_Vc0mTqdmmbmmRR_3ujKyvOYeYdfu8xPITOKLmihKtrS6MheUkFHKAZI4JkheD54V4zeYzmIWxImpLKUqoZmiodOzdi-DBrPb4CTtq4vned1X1S0wQeB-hh7CzgUY8urAFiuMEae7eNgKPD8d1lthtgDCkq2QaIaf9zDTqC73QfTtFRmw7Mf-8JerlfrKrHbPn88FTdLjPDShozofJSsYIK0VolWUNpoww3JbOMSgllywstlWi4aGxjpJWFosLkjOVEJQvhJ-hilzt597aFEOuN2_r0XaiZJILzkimeqMsdZbwLwUNbT74btP-sKam_S63v6Kr6KXWR4PMd7IPZc3-l8y_4anQj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605338293</pqid></control><display><type>article</type><title>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Shamraienko, Volodymyr ; Spittel, Daniel ; Hübner, René ; Samadi Khoshkhoo, Mahdi ; Weiß, Nelli ; Georgi, Maximilian ; Borchert, Konstantin B. L ; Schwarz, Dana ; Lesnyak, Vladimir ; Eychmüller, Alexander</creator><creatorcontrib>Shamraienko, Volodymyr ; Spittel, Daniel ; Hübner, René ; Samadi Khoshkhoo, Mahdi ; Weiß, Nelli ; Georgi, Maximilian ; Borchert, Konstantin B. L ; Schwarz, Dana ; Lesnyak, Vladimir ; Eychmüller, Alexander</creatorcontrib><description>We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb 2+ , Hg 2+ , Zn 2+ , or Sn 4+ ). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri- n -octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics. Up to 5 μm large ca. 5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized via cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/d1tc04815e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Cation exchanging ; Coated electrodes ; Copper ; Copper selenides ; Copper zinc tin selenide ; Crystal structure ; Electronic devices ; Lead selenides ; Mercury compounds ; Micrometers ; Nanomaterials ; Nanosheets ; Organic chemistry ; Photovoltaic cells ; Reaction time ; Selenides ; Selenium ; Thin films</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-12, Vol.9 (46), p.16523-16535</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</citedby><cites>FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</cites><orcidid>0000-0001-9926-6279 ; 0000-0003-0533-4782 ; 0000-0002-2480-8755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shamraienko, Volodymyr</creatorcontrib><creatorcontrib>Spittel, Daniel</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Samadi Khoshkhoo, Mahdi</creatorcontrib><creatorcontrib>Weiß, Nelli</creatorcontrib><creatorcontrib>Georgi, Maximilian</creatorcontrib><creatorcontrib>Borchert, Konstantin B. L</creatorcontrib><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Lesnyak, Vladimir</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><title>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb 2+ , Hg 2+ , Zn 2+ , or Sn 4+ ). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri- n -octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics. Up to 5 μm large ca. 5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized via cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials.</description><subject>Cation exchanging</subject><subject>Coated electrodes</subject><subject>Copper</subject><subject>Copper selenides</subject><subject>Copper zinc tin selenide</subject><subject>Crystal structure</subject><subject>Electronic devices</subject><subject>Lead selenides</subject><subject>Mercury compounds</subject><subject>Micrometers</subject><subject>Nanomaterials</subject><subject>Nanosheets</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Reaction time</subject><subject>Selenides</subject><subject>Selenium</subject><subject>Thin films</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LxDAQxYMouOhevAsBb0I1H03aeJO6fsCCl_Vc0mTqdmmbmmRR_3ujKyvOYeYdfu8xPITOKLmihKtrS6MheUkFHKAZI4JkheD54V4zeYzmIWxImpLKUqoZmiodOzdi-DBrPb4CTtq4vned1X1S0wQeB-hh7CzgUY8urAFiuMEae7eNgKPD8d1lthtgDCkq2QaIaf9zDTqC73QfTtFRmw7Mf-8JerlfrKrHbPn88FTdLjPDShozofJSsYIK0VolWUNpoww3JbOMSgllywstlWi4aGxjpJWFosLkjOVEJQvhJ-hilzt597aFEOuN2_r0XaiZJILzkimeqMsdZbwLwUNbT74btP-sKam_S63v6Kr6KXWR4PMd7IPZc3-l8y_4anQj</recordid><startdate>20211202</startdate><enddate>20211202</enddate><creator>Shamraienko, Volodymyr</creator><creator>Spittel, Daniel</creator><creator>Hübner, René</creator><creator>Samadi Khoshkhoo, Mahdi</creator><creator>Weiß, Nelli</creator><creator>Georgi, Maximilian</creator><creator>Borchert, Konstantin B. L</creator><creator>Schwarz, Dana</creator><creator>Lesnyak, Vladimir</creator><creator>Eychmüller, Alexander</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9926-6279</orcidid><orcidid>https://orcid.org/0000-0003-0533-4782</orcidid><orcidid>https://orcid.org/0000-0002-2480-8755</orcidid></search><sort><creationdate>20211202</creationdate><title>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</title><author>Shamraienko, Volodymyr ; Spittel, Daniel ; Hübner, René ; Samadi Khoshkhoo, Mahdi ; Weiß, Nelli ; Georgi, Maximilian ; Borchert, Konstantin B. L ; Schwarz, Dana ; Lesnyak, Vladimir ; Eychmüller, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-5948927155fd962b11b9c3c82d2166e8f37a695b35bdbc6d67915c4224095fd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cation exchanging</topic><topic>Coated electrodes</topic><topic>Copper</topic><topic>Copper selenides</topic><topic>Copper zinc tin selenide</topic><topic>Crystal structure</topic><topic>Electronic devices</topic><topic>Lead selenides</topic><topic>Mercury compounds</topic><topic>Micrometers</topic><topic>Nanomaterials</topic><topic>Nanosheets</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Reaction time</topic><topic>Selenides</topic><topic>Selenium</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shamraienko, Volodymyr</creatorcontrib><creatorcontrib>Spittel, Daniel</creatorcontrib><creatorcontrib>Hübner, René</creatorcontrib><creatorcontrib>Samadi Khoshkhoo, Mahdi</creatorcontrib><creatorcontrib>Weiß, Nelli</creatorcontrib><creatorcontrib>Georgi, Maximilian</creatorcontrib><creatorcontrib>Borchert, Konstantin B. L</creatorcontrib><creatorcontrib>Schwarz, Dana</creatorcontrib><creatorcontrib>Lesnyak, Vladimir</creatorcontrib><creatorcontrib>Eychmüller, Alexander</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shamraienko, Volodymyr</au><au>Spittel, Daniel</au><au>Hübner, René</au><au>Samadi Khoshkhoo, Mahdi</au><au>Weiß, Nelli</au><au>Georgi, Maximilian</au><au>Borchert, Konstantin B. L</au><au>Schwarz, Dana</au><au>Lesnyak, Vladimir</au><au>Eychmüller, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2021-12-02</date><risdate>2021</risdate><volume>9</volume><issue>46</issue><spage>16523</spage><epage>16535</epage><pages>16523-16535</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>We report a synthesis route to two-dimensional PbSe, HgSe, ZnSe, SnSe, and Cu-Zn-Sn-Se (CZTSe) nanomaterials based on cation exchange (CE) reactions. This approach includes two steps: it starts with the synthesis of hexagonal, up to several micrometers large yet approx. 5 nm-thick CuSe nanosheets (NSs), followed by CE of the host copper ions with the desired guest cation (Pb 2+ , Hg 2+ , Zn 2+ , or Sn 4+ ). In the case of CZTSe, both guest cations can be added simultaneously since the variation of the guest cation ratio and reaction time can lead to various compositions. Mild reaction conditions allow for a preservation of the size and the 2D shape of the parent NSs accompanied by corresponding changes in their crystal structure. We furthermore demonstrate that the crystal structure of CuSe NSs can be rearranged even without addition of guest cations in the presence of tri- n -octylphosphine. Thus, the obtained NSs were further subjected to ligand exchange reactions in order to replace insulating bulky organic molecules on their surface with compact iodide and sulfide ions, a step crucial for the application of nanomaterials in (opto)electronic devices. The resulting NS dispersions were processed into thin films by spray-coating onto commercially available interdigitated platinum electrodes. Light response measurements of PbSe and CZTSe NS-films demonstrated their potential for applications as light-sensitive materials in photodetection or photovoltaics. Up to 5 μm large ca. 5 nm thick PbSe, HgSe, SnCuSe, ZnCuSe, and Cu-Zn-Sn-Se nanosheets (NSs) were synthesized via cation exchange starting from CuSe NSs, offering a universal platform for the synthesis of other metal selenide 2D nanomaterials.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1tc04815e</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9926-6279</orcidid><orcidid>https://orcid.org/0000-0003-0533-4782</orcidid><orcidid>https://orcid.org/0000-0002-2480-8755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7526
ispartof Journal of materials chemistry. C, Materials for optical and electronic devices, 2021-12, Vol.9 (46), p.16523-16535
issn 2050-7526
2050-7534
language eng
recordid cdi_proquest_journals_2605338293
source Royal Society Of Chemistry Journals 2008-
subjects Cation exchanging
Coated electrodes
Copper
Copper selenides
Copper zinc tin selenide
Crystal structure
Electronic devices
Lead selenides
Mercury compounds
Micrometers
Nanomaterials
Nanosheets
Organic chemistry
Photovoltaic cells
Reaction time
Selenides
Selenium
Thin films
title Cation exchange on colloidal copper selenide nanosheets: a route to two-dimensional metal selenide nanomaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%20exchange%20on%20colloidal%20copper%20selenide%20nanosheets:%20a%20route%20to%20two-dimensional%20metal%20selenide%20nanomaterials&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Shamraienko,%20Volodymyr&rft.date=2021-12-02&rft.volume=9&rft.issue=46&rft.spage=16523&rft.epage=16535&rft.pages=16523-16535&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/d1tc04815e&rft_dat=%3Cproquest_cross%3E2605338293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605338293&rft_id=info:pmid/&rfr_iscdi=true