On a Class of ðoe†-Modules

In [Int. Electron. J. Algebra, 15, 173 (2014)], Smith introduced maps between the lattice of ideals of a commutative ring and the lattice of submodules of an R-module M, i.e., μ and ðoe† mappings. The definitions of the maps were motivated by the definition of multiplication modules. Moreover, some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2021-01, Vol.73 (3), p.384-390
Hauptverfasser: Wijayanti, I E, Ardiyansyah, M, Prasetyo, P W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In [Int. Electron. J. Algebra, 15, 173 (2014)], Smith introduced maps between the lattice of ideals of a commutative ring and the lattice of submodules of an R-module M, i.e., μ and ðoe† mappings. The definitions of the maps were motivated by the definition of multiplication modules. Moreover, some sufficient conditions for the maps to be lattice homomorphisms were studied. We define a class of ðoe†-modules and indicate the properties of this class. We also present sufficient conditions for the module and the ring under which the class ðoe† is a hereditary pretorsion class.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-021-01931-0