On a Class of ðoe-Modules
In [Int. Electron. J. Algebra, 15, 173 (2014)], Smith introduced maps between the lattice of ideals of a commutative ring and the lattice of submodules of an R-module M, i.e., μ and ðoe mappings. The definitions of the maps were motivated by the definition of multiplication modules. Moreover, some...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2021-01, Vol.73 (3), p.384-390 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In [Int. Electron. J. Algebra, 15, 173 (2014)], Smith introduced maps between the lattice of ideals of a commutative ring and the lattice of submodules of an R-module M, i.e., μ and ðoe mappings. The definitions of the maps were motivated by the definition of multiplication modules. Moreover, some sufficient conditions for the maps to be lattice homomorphisms were studied. We define a class of ðoe-modules and indicate the properties of this class. We also present sufficient conditions for the module and the ring under which the class ðoe is a hereditary pretorsion class. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-021-01931-0 |