Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell

Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of composite materials 2021-11, Vol.57 (5), p.623-634
Hauptverfasser: Bakulin, V. N., Boitsova, D. A., Nedbai, A. Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 634
container_issue 5
container_start_page 623
container_title Mechanics of composite materials
container_volume 57
creator Bakulin, V. N.
Boitsova, D. A.
Nedbai, A. Ya
description Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells.
doi_str_mv 10.1007/s11029-021-09984-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2605266250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684555044</galeid><sourcerecordid>A684555044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVpoW6SP5DTQk45KBl97a6OwfTDYEhju2cha0eOwnrlSGuo_32VbCDkUuYwMDzPzMBLyCWDGwbQ3GbGgGsKnFHQupVUfyIzphpBW835ZzIDphlVda2-km85PwEUDeoZefhtk93jmIKrVpjjYAeHVfSVrTaPCZEu7QkTdtX81IehK5jtq3ncH2IOI1arsKXrMXiPQ2HWj9j35-SLt33Gi7d-Rv78-L6Z_6LL-5-L-d2SOqH5SFshJDolRON0g8i8hK71zHrGu4ZZvUUhueeS1e229S1Y5YUDKZzgjdKgxRm5mvYeUnw-Yh7NUzymoZw0vAbF65orKNTNRO1sjyYMPo7JulId7oOLA_pQ5nd1K5VSIGURrj8IhRnx77izx5zNYr36yPKJdSnmnNCbQwp7m06GgXnJxUy5mJKLec3FvPwtJikXeNhhev_7P9Y_1QuNxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605266250</pqid></control><display><type>article</type><title>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bakulin, V. N. ; Boitsova, D. A. ; Nedbai, A. Ya</creator><creatorcontrib>Bakulin, V. N. ; Boitsova, D. A. ; Nedbai, A. Ya</creatorcontrib><description>Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells.</description><identifier>ISSN: 0191-5665</identifier><identifier>EISSN: 1573-8922</identifier><identifier>DOI: 10.1007/s11029-021-09984-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Axial forces ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites ; Critical frequencies ; Cylinders ; Cylindrical shells ; Differential equations ; Elastic foundations ; External pressure ; Glass ; Materials Science ; Mathematical models ; Modulus of elasticity ; Natural Materials ; Resonance ; Shells ; Solid Mechanics ; Subgrade reaction</subject><ispartof>Mechanics of composite materials, 2021-11, Vol.57 (5), p.623-634</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</citedby><cites>FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11029-021-09984-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11029-021-09984-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bakulin, V. N.</creatorcontrib><creatorcontrib>Boitsova, D. A.</creatorcontrib><creatorcontrib>Nedbai, A. Ya</creatorcontrib><title>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</title><title>Mechanics of composite materials</title><addtitle>Mech Compos Mater</addtitle><description>Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells.</description><subject>Axial forces</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Critical frequencies</subject><subject>Cylinders</subject><subject>Cylindrical shells</subject><subject>Differential equations</subject><subject>Elastic foundations</subject><subject>External pressure</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Natural Materials</subject><subject>Resonance</subject><subject>Shells</subject><subject>Solid Mechanics</subject><subject>Subgrade reaction</subject><issn>0191-5665</issn><issn>1573-8922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhkVpoW6SP5DTQk45KBl97a6OwfTDYEhju2cha0eOwnrlSGuo_32VbCDkUuYwMDzPzMBLyCWDGwbQ3GbGgGsKnFHQupVUfyIzphpBW835ZzIDphlVda2-km85PwEUDeoZefhtk93jmIKrVpjjYAeHVfSVrTaPCZEu7QkTdtX81IehK5jtq3ncH2IOI1arsKXrMXiPQ2HWj9j35-SLt33Gi7d-Rv78-L6Z_6LL-5-L-d2SOqH5SFshJDolRON0g8i8hK71zHrGu4ZZvUUhueeS1e229S1Y5YUDKZzgjdKgxRm5mvYeUnw-Yh7NUzymoZw0vAbF65orKNTNRO1sjyYMPo7JulId7oOLA_pQ5nd1K5VSIGURrj8IhRnx77izx5zNYr36yPKJdSnmnNCbQwp7m06GgXnJxUy5mJKLec3FvPwtJikXeNhhev_7P9Y_1QuNxg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bakulin, V. N.</creator><creator>Boitsova, D. A.</creator><creator>Nedbai, A. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20211101</creationdate><title>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</title><author>Bakulin, V. N. ; Boitsova, D. A. ; Nedbai, A. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axial forces</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Critical frequencies</topic><topic>Cylinders</topic><topic>Cylindrical shells</topic><topic>Differential equations</topic><topic>Elastic foundations</topic><topic>External pressure</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Natural Materials</topic><topic>Resonance</topic><topic>Shells</topic><topic>Solid Mechanics</topic><topic>Subgrade reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakulin, V. N.</creatorcontrib><creatorcontrib>Boitsova, D. A.</creatorcontrib><creatorcontrib>Nedbai, A. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Mechanics of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakulin, V. N.</au><au>Boitsova, D. A.</au><au>Nedbai, A. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</atitle><jtitle>Mechanics of composite materials</jtitle><stitle>Mech Compos Mater</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>57</volume><issue>5</issue><spage>623</spage><epage>634</epage><pages>623-634</pages><issn>0191-5665</issn><eissn>1573-8922</eissn><abstract>Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11029-021-09984-9</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0191-5665
ispartof Mechanics of composite materials, 2021-11, Vol.57 (5), p.623-634
issn 0191-5665
1573-8922
language eng
recordid cdi_proquest_journals_2605266250
source SpringerLink Journals - AutoHoldings
subjects Axial forces
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Composite materials
Composites
Critical frequencies
Cylinders
Cylindrical shells
Differential equations
Elastic foundations
External pressure
Glass
Materials Science
Mathematical models
Modulus of elasticity
Natural Materials
Resonance
Shells
Solid Mechanics
Subgrade reaction
title Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Resonance%20of%20a%20Three-Layered%20Cylindrical%20Composite%20Rib-Stiffened%20Shell&rft.jtitle=Mechanics%20of%20composite%20materials&rft.au=Bakulin,%20V.%20N.&rft.date=2021-11-01&rft.volume=57&rft.issue=5&rft.spage=623&rft.epage=634&rft.pages=623-634&rft.issn=0191-5665&rft.eissn=1573-8922&rft_id=info:doi/10.1007/s11029-021-09984-9&rft_dat=%3Cgale_proqu%3EA684555044%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605266250&rft_id=info:pmid/&rft_galeid=A684555044&rfr_iscdi=true