Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell
Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is m...
Gespeichert in:
Veröffentlicht in: | Mechanics of composite materials 2021-11, Vol.57 (5), p.623-634 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 634 |
---|---|
container_issue | 5 |
container_start_page | 623 |
container_title | Mechanics of composite materials |
container_volume | 57 |
creator | Bakulin, V. N. Boitsova, D. A. Nedbai, A. Ya |
description | Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells. |
doi_str_mv | 10.1007/s11029-021-09984-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2605266250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684555044</galeid><sourcerecordid>A684555044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</originalsourceid><addsrcrecordid>eNp9kU1rGzEQhkVpoW6SP5DTQk45KBl97a6OwfTDYEhju2cha0eOwnrlSGuo_32VbCDkUuYwMDzPzMBLyCWDGwbQ3GbGgGsKnFHQupVUfyIzphpBW835ZzIDphlVda2-km85PwEUDeoZefhtk93jmIKrVpjjYAeHVfSVrTaPCZEu7QkTdtX81IehK5jtq3ncH2IOI1arsKXrMXiPQ2HWj9j35-SLt33Gi7d-Rv78-L6Z_6LL-5-L-d2SOqH5SFshJDolRON0g8i8hK71zHrGu4ZZvUUhueeS1e229S1Y5YUDKZzgjdKgxRm5mvYeUnw-Yh7NUzymoZw0vAbF65orKNTNRO1sjyYMPo7JulId7oOLA_pQ5nd1K5VSIGURrj8IhRnx77izx5zNYr36yPKJdSnmnNCbQwp7m06GgXnJxUy5mJKLec3FvPwtJikXeNhhev_7P9Y_1QuNxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605266250</pqid></control><display><type>article</type><title>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bakulin, V. N. ; Boitsova, D. A. ; Nedbai, A. Ya</creator><creatorcontrib>Bakulin, V. N. ; Boitsova, D. A. ; Nedbai, A. Ya</creatorcontrib><description>Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells.</description><identifier>ISSN: 0191-5665</identifier><identifier>EISSN: 1573-8922</identifier><identifier>DOI: 10.1007/s11029-021-09984-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Axial forces ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites ; Critical frequencies ; Cylinders ; Cylindrical shells ; Differential equations ; Elastic foundations ; External pressure ; Glass ; Materials Science ; Mathematical models ; Modulus of elasticity ; Natural Materials ; Resonance ; Shells ; Solid Mechanics ; Subgrade reaction</subject><ispartof>Mechanics of composite materials, 2021-11, Vol.57 (5), p.623-634</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</citedby><cites>FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11029-021-09984-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11029-021-09984-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bakulin, V. N.</creatorcontrib><creatorcontrib>Boitsova, D. A.</creatorcontrib><creatorcontrib>Nedbai, A. Ya</creatorcontrib><title>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</title><title>Mechanics of composite materials</title><addtitle>Mech Compos Mater</addtitle><description>Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells.</description><subject>Axial forces</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Critical frequencies</subject><subject>Cylinders</subject><subject>Cylindrical shells</subject><subject>Differential equations</subject><subject>Elastic foundations</subject><subject>External pressure</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Natural Materials</subject><subject>Resonance</subject><subject>Shells</subject><subject>Solid Mechanics</subject><subject>Subgrade reaction</subject><issn>0191-5665</issn><issn>1573-8922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kU1rGzEQhkVpoW6SP5DTQk45KBl97a6OwfTDYEhju2cha0eOwnrlSGuo_32VbCDkUuYwMDzPzMBLyCWDGwbQ3GbGgGsKnFHQupVUfyIzphpBW835ZzIDphlVda2-km85PwEUDeoZefhtk93jmIKrVpjjYAeHVfSVrTaPCZEu7QkTdtX81IehK5jtq3ncH2IOI1arsKXrMXiPQ2HWj9j35-SLt33Gi7d-Rv78-L6Z_6LL-5-L-d2SOqH5SFshJDolRON0g8i8hK71zHrGu4ZZvUUhueeS1e229S1Y5YUDKZzgjdKgxRm5mvYeUnw-Yh7NUzymoZw0vAbF65orKNTNRO1sjyYMPo7JulId7oOLA_pQ5nd1K5VSIGURrj8IhRnx77izx5zNYr36yPKJdSnmnNCbQwp7m06GgXnJxUy5mJKLec3FvPwtJikXeNhhev_7P9Y_1QuNxg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Bakulin, V. N.</creator><creator>Boitsova, D. A.</creator><creator>Nedbai, A. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20211101</creationdate><title>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</title><author>Bakulin, V. N. ; Boitsova, D. A. ; Nedbai, A. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-8334ec5337c97ee1f40d8f1af12d71a9be342f24168b8f80a5f3c043c32759093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Axial forces</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Critical frequencies</topic><topic>Cylinders</topic><topic>Cylindrical shells</topic><topic>Differential equations</topic><topic>Elastic foundations</topic><topic>External pressure</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Natural Materials</topic><topic>Resonance</topic><topic>Shells</topic><topic>Solid Mechanics</topic><topic>Subgrade reaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakulin, V. N.</creatorcontrib><creatorcontrib>Boitsova, D. A.</creatorcontrib><creatorcontrib>Nedbai, A. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Mechanics of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakulin, V. N.</au><au>Boitsova, D. A.</au><au>Nedbai, A. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell</atitle><jtitle>Mechanics of composite materials</jtitle><stitle>Mech Compos Mater</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>57</volume><issue>5</issue><spage>623</spage><epage>634</epage><pages>623-634</pages><issn>0191-5665</issn><eissn>1573-8922</eissn><abstract>Equations for the parametric resonance of a three-layered cylindrical shell with composite layers stiffened with ribs and containing a hollow isotropic cylinder are obtained. The shell is loaded by axial forces and an external pressure varying harmonically in time. The influence of the cylinder is modeled as an elastic foundation whose modulus of subgrade reaction was determined from equations of 3D elasticity theory. Their solution is sought in the form of a trigonometric series in the axial coordinate. The infinite system of inhomogeneous differential equations of Mathieu–Hill type obtained is solved using a trigonometric series in time. Using a numerical example, the main regions of instability were obtained for the first time, and plots for the critical frequencies on the channel radius, the elastic modulus of cylinder material, and the number and height of ribs are found. The mathematical model proposed extends the range of relevant scientific and applied problems in studying three-layered stiffened shells.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11029-021-09984-9</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0191-5665 |
ispartof | Mechanics of composite materials, 2021-11, Vol.57 (5), p.623-634 |
issn | 0191-5665 1573-8922 |
language | eng |
recordid | cdi_proquest_journals_2605266250 |
source | SpringerLink Journals - AutoHoldings |
subjects | Axial forces Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composite materials Composites Critical frequencies Cylinders Cylindrical shells Differential equations Elastic foundations External pressure Glass Materials Science Mathematical models Modulus of elasticity Natural Materials Resonance Shells Solid Mechanics Subgrade reaction |
title | Parametric Resonance of a Three-Layered Cylindrical Composite Rib-Stiffened Shell |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parametric%20Resonance%20of%20a%20Three-Layered%20Cylindrical%20Composite%20Rib-Stiffened%20Shell&rft.jtitle=Mechanics%20of%20composite%20materials&rft.au=Bakulin,%20V.%20N.&rft.date=2021-11-01&rft.volume=57&rft.issue=5&rft.spage=623&rft.epage=634&rft.pages=623-634&rft.issn=0191-5665&rft.eissn=1573-8922&rft_id=info:doi/10.1007/s11029-021-09984-9&rft_dat=%3Cgale_proqu%3EA684555044%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605266250&rft_id=info:pmid/&rft_galeid=A684555044&rfr_iscdi=true |