High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe

According to the Mott's relation, the figure‐of‐merit of a thermoelectric material depends on the charge carrier concentration and carrier mobility. This explains the observation that low thermoelectric properties of GeTe‐based materials suffer from the degraded carrier mobility, on account of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2021-12, Vol.11 (45), p.n/a
Hauptverfasser: Yin, Liang‐Cao, Liu, Wei‐Di, Li, Meng, Sun, Qiang, Gao, Han, Wang, De‐Zhuang, Wu, Hao, Wang, Yi‐Feng, Shi, Xiao‐Lei, Liu, Qingfeng, Chen, Zhi‐Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 45
container_start_page
container_title Advanced energy materials
container_volume 11
creator Yin, Liang‐Cao
Liu, Wei‐Di
Li, Meng
Sun, Qiang
Gao, Han
Wang, De‐Zhuang
Wu, Hao
Wang, Yi‐Feng
Shi, Xiao‐Lei
Liu, Qingfeng
Chen, Zhi‐Gang
description According to the Mott's relation, the figure‐of‐merit of a thermoelectric material depends on the charge carrier concentration and carrier mobility. This explains the observation that low thermoelectric properties of GeTe‐based materials suffer from the degraded carrier mobility, on account of the fluctuation of electronegativity and ionicity of various elements. Here, high‐performance CuBiSe2 alloyed GeTe with high carrier mobility due to the small electronegativity difference between Cu and Ge atoms and the weak ionicity of CuTe and BiTe bonds, is developed. Density functional theory calculations indicate that CuBiSe2 alloying increases the formation energy of Ge vacancies and correspondingly reduces the amount of Ge vacancies, leading to an optimized carrier concentration and a high power factor of ≈37.4 µW cm−1 K−2 at 723 K. Moreover, CuBiSe2 alloying induces dense point defects and triggers ubiquitous lattice distortions, leading to a reduced lattice thermal conductivity of 0.39 W m−1 K−1 at 723 K. These synergistic effects result in an optimization of the carrier mobility, the carrier concentration, and the lattice thermal conductivity, which favors an enhanced peak figure‐of‐merit of ≈2.2 at 723 K in (GeTe)0.94(CuBiSe2)0.06. This study provides guidance for the screening of GeTe‐based thermoelectric materials with high carrier mobility. The thermoelectric properties of GeTe‐based materials usually suffer from reduced carrier mobility. In this study, alloying CuBiSe2 into GeTe allows high intrinsic carrier mobility and a high zT of ≈2.2 at 723 K and an average zT of 1.4 from 300 to 723 K in (GeTe)0.94(CuBiSe2)0.06.
doi_str_mv 10.1002/aenm.202102913
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2605064830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605064830</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2333-a72388b33257c7f43ccd618e9589861812ea417548aa64f54f60d2cc403d17513</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEEtPYlXMkzh1JnKbpcVT7AK1wYJyjrHW3TF070lao_z0dQ_PFz_bTs_Qj5JGzKWdMPFusjlPBBGci5nBDRlxxGSgt2e1Vg7gnk6Y5sKFkzBnAiLyt3G5PE-u9Q0_TeutK1_bUVjn9uyzcrvNI64Km6F1LXUXbPdKke3GfKOisLOsec7rEDT6Qu8KWDU7--5h8LeabZBWsP5avyWwdnAQABDYSoPUWQIRRFhUSsixXXGMc6lgPggu0kkeh1NYqWYSyUCwXWSYZ5MOaw5g8XXJPvv7usGnNoe58Nbw0QrGQKamBDa744vpxJfbm5N3R-t5wZs68zJmXufIys_l7ep3gF2uAXQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605064830</pqid></control><display><type>article</type><title>High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe</title><source>Wiley Online Library All Journals</source><creator>Yin, Liang‐Cao ; Liu, Wei‐Di ; Li, Meng ; Sun, Qiang ; Gao, Han ; Wang, De‐Zhuang ; Wu, Hao ; Wang, Yi‐Feng ; Shi, Xiao‐Lei ; Liu, Qingfeng ; Chen, Zhi‐Gang</creator><creatorcontrib>Yin, Liang‐Cao ; Liu, Wei‐Di ; Li, Meng ; Sun, Qiang ; Gao, Han ; Wang, De‐Zhuang ; Wu, Hao ; Wang, Yi‐Feng ; Shi, Xiao‐Lei ; Liu, Qingfeng ; Chen, Zhi‐Gang</creatorcontrib><description>According to the Mott's relation, the figure‐of‐merit of a thermoelectric material depends on the charge carrier concentration and carrier mobility. This explains the observation that low thermoelectric properties of GeTe‐based materials suffer from the degraded carrier mobility, on account of the fluctuation of electronegativity and ionicity of various elements. Here, high‐performance CuBiSe2 alloyed GeTe with high carrier mobility due to the small electronegativity difference between Cu and Ge atoms and the weak ionicity of CuTe and BiTe bonds, is developed. Density functional theory calculations indicate that CuBiSe2 alloying increases the formation energy of Ge vacancies and correspondingly reduces the amount of Ge vacancies, leading to an optimized carrier concentration and a high power factor of ≈37.4 µW cm−1 K−2 at 723 K. Moreover, CuBiSe2 alloying induces dense point defects and triggers ubiquitous lattice distortions, leading to a reduced lattice thermal conductivity of 0.39 W m−1 K−1 at 723 K. These synergistic effects result in an optimization of the carrier mobility, the carrier concentration, and the lattice thermal conductivity, which favors an enhanced peak figure‐of‐merit of ≈2.2 at 723 K in (GeTe)0.94(CuBiSe2)0.06. This study provides guidance for the screening of GeTe‐based thermoelectric materials with high carrier mobility. The thermoelectric properties of GeTe‐based materials usually suffer from reduced carrier mobility. In this study, alloying CuBiSe2 into GeTe allows high intrinsic carrier mobility and a high zT of ≈2.2 at 723 K and an average zT of 1.4 from 300 to 723 K in (GeTe)0.94(CuBiSe2)0.06.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202102913</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloying elements ; Bonding strength ; Carrier density ; Carrier mobility ; Charge materials ; Current carriers ; Density functional theory ; Electronegativity ; Electrons ; Figure of merit ; Free energy ; GeTe ; Heat conductivity ; Heat of formation ; Heat transfer ; Lattice vacancies ; Optimization ; Point defects ; Power factor ; Synergistic effect ; Tellurium ; Thermal conductivity ; Thermoelectric materials ; thermoelectrics</subject><ispartof>Advanced energy materials, 2021-12, Vol.11 (45), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9309-7993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202102913$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202102913$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Yin, Liang‐Cao</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Wang, De‐Zhuang</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Wang, Yi‐Feng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Liu, Qingfeng</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><title>High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe</title><title>Advanced energy materials</title><description>According to the Mott's relation, the figure‐of‐merit of a thermoelectric material depends on the charge carrier concentration and carrier mobility. This explains the observation that low thermoelectric properties of GeTe‐based materials suffer from the degraded carrier mobility, on account of the fluctuation of electronegativity and ionicity of various elements. Here, high‐performance CuBiSe2 alloyed GeTe with high carrier mobility due to the small electronegativity difference between Cu and Ge atoms and the weak ionicity of CuTe and BiTe bonds, is developed. Density functional theory calculations indicate that CuBiSe2 alloying increases the formation energy of Ge vacancies and correspondingly reduces the amount of Ge vacancies, leading to an optimized carrier concentration and a high power factor of ≈37.4 µW cm−1 K−2 at 723 K. Moreover, CuBiSe2 alloying induces dense point defects and triggers ubiquitous lattice distortions, leading to a reduced lattice thermal conductivity of 0.39 W m−1 K−1 at 723 K. These synergistic effects result in an optimization of the carrier mobility, the carrier concentration, and the lattice thermal conductivity, which favors an enhanced peak figure‐of‐merit of ≈2.2 at 723 K in (GeTe)0.94(CuBiSe2)0.06. This study provides guidance for the screening of GeTe‐based thermoelectric materials with high carrier mobility. The thermoelectric properties of GeTe‐based materials usually suffer from reduced carrier mobility. In this study, alloying CuBiSe2 into GeTe allows high intrinsic carrier mobility and a high zT of ≈2.2 at 723 K and an average zT of 1.4 from 300 to 723 K in (GeTe)0.94(CuBiSe2)0.06.</description><subject>Alloying elements</subject><subject>Bonding strength</subject><subject>Carrier density</subject><subject>Carrier mobility</subject><subject>Charge materials</subject><subject>Current carriers</subject><subject>Density functional theory</subject><subject>Electronegativity</subject><subject>Electrons</subject><subject>Figure of merit</subject><subject>Free energy</subject><subject>GeTe</subject><subject>Heat conductivity</subject><subject>Heat of formation</subject><subject>Heat transfer</subject><subject>Lattice vacancies</subject><subject>Optimization</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Synergistic effect</subject><subject>Tellurium</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>thermoelectrics</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1PwzAMxSMEEtPYlXMkzh1JnKbpcVT7AK1wYJyjrHW3TF070lao_z0dQ_PFz_bTs_Qj5JGzKWdMPFusjlPBBGci5nBDRlxxGSgt2e1Vg7gnk6Y5sKFkzBnAiLyt3G5PE-u9Q0_TeutK1_bUVjn9uyzcrvNI64Km6F1LXUXbPdKke3GfKOisLOsec7rEDT6Qu8KWDU7--5h8LeabZBWsP5avyWwdnAQABDYSoPUWQIRRFhUSsixXXGMc6lgPggu0kkeh1NYqWYSyUCwXWSYZ5MOaw5g8XXJPvv7usGnNoe58Nbw0QrGQKamBDa744vpxJfbm5N3R-t5wZs68zJmXufIys_l7ep3gF2uAXQY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Yin, Liang‐Cao</creator><creator>Liu, Wei‐Di</creator><creator>Li, Meng</creator><creator>Sun, Qiang</creator><creator>Gao, Han</creator><creator>Wang, De‐Zhuang</creator><creator>Wu, Hao</creator><creator>Wang, Yi‐Feng</creator><creator>Shi, Xiao‐Lei</creator><creator>Liu, Qingfeng</creator><creator>Chen, Zhi‐Gang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid></search><sort><creationdate>20211201</creationdate><title>High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe</title><author>Yin, Liang‐Cao ; Liu, Wei‐Di ; Li, Meng ; Sun, Qiang ; Gao, Han ; Wang, De‐Zhuang ; Wu, Hao ; Wang, Yi‐Feng ; Shi, Xiao‐Lei ; Liu, Qingfeng ; Chen, Zhi‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2333-a72388b33257c7f43ccd618e9589861812ea417548aa64f54f60d2cc403d17513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloying elements</topic><topic>Bonding strength</topic><topic>Carrier density</topic><topic>Carrier mobility</topic><topic>Charge materials</topic><topic>Current carriers</topic><topic>Density functional theory</topic><topic>Electronegativity</topic><topic>Electrons</topic><topic>Figure of merit</topic><topic>Free energy</topic><topic>GeTe</topic><topic>Heat conductivity</topic><topic>Heat of formation</topic><topic>Heat transfer</topic><topic>Lattice vacancies</topic><topic>Optimization</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Synergistic effect</topic><topic>Tellurium</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Liang‐Cao</creatorcontrib><creatorcontrib>Liu, Wei‐Di</creatorcontrib><creatorcontrib>Li, Meng</creatorcontrib><creatorcontrib>Sun, Qiang</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Wang, De‐Zhuang</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Wang, Yi‐Feng</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Liu, Qingfeng</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Liang‐Cao</au><au>Liu, Wei‐Di</au><au>Li, Meng</au><au>Sun, Qiang</au><au>Gao, Han</au><au>Wang, De‐Zhuang</au><au>Wu, Hao</au><au>Wang, Yi‐Feng</au><au>Shi, Xiao‐Lei</au><au>Liu, Qingfeng</au><au>Chen, Zhi‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe</atitle><jtitle>Advanced energy materials</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>45</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>According to the Mott's relation, the figure‐of‐merit of a thermoelectric material depends on the charge carrier concentration and carrier mobility. This explains the observation that low thermoelectric properties of GeTe‐based materials suffer from the degraded carrier mobility, on account of the fluctuation of electronegativity and ionicity of various elements. Here, high‐performance CuBiSe2 alloyed GeTe with high carrier mobility due to the small electronegativity difference between Cu and Ge atoms and the weak ionicity of CuTe and BiTe bonds, is developed. Density functional theory calculations indicate that CuBiSe2 alloying increases the formation energy of Ge vacancies and correspondingly reduces the amount of Ge vacancies, leading to an optimized carrier concentration and a high power factor of ≈37.4 µW cm−1 K−2 at 723 K. Moreover, CuBiSe2 alloying induces dense point defects and triggers ubiquitous lattice distortions, leading to a reduced lattice thermal conductivity of 0.39 W m−1 K−1 at 723 K. These synergistic effects result in an optimization of the carrier mobility, the carrier concentration, and the lattice thermal conductivity, which favors an enhanced peak figure‐of‐merit of ≈2.2 at 723 K in (GeTe)0.94(CuBiSe2)0.06. This study provides guidance for the screening of GeTe‐based thermoelectric materials with high carrier mobility. The thermoelectric properties of GeTe‐based materials usually suffer from reduced carrier mobility. In this study, alloying CuBiSe2 into GeTe allows high intrinsic carrier mobility and a high zT of ≈2.2 at 723 K and an average zT of 1.4 from 300 to 723 K in (GeTe)0.94(CuBiSe2)0.06.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202102913</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9309-7993</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2021-12, Vol.11 (45), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2605064830
source Wiley Online Library All Journals
subjects Alloying elements
Bonding strength
Carrier density
Carrier mobility
Charge materials
Current carriers
Density functional theory
Electronegativity
Electrons
Figure of merit
Free energy
GeTe
Heat conductivity
Heat of formation
Heat transfer
Lattice vacancies
Optimization
Point defects
Power factor
Synergistic effect
Tellurium
Thermal conductivity
Thermoelectric materials
thermoelectrics
title High Carrier Mobility and High Figure of Merit in the CuBiSe2 Alloyed GeTe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A34%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Carrier%20Mobility%20and%20High%20Figure%20of%20Merit%20in%20the%20CuBiSe2%20Alloyed%20GeTe&rft.jtitle=Advanced%20energy%20materials&rft.au=Yin,%20Liang%E2%80%90Cao&rft.date=2021-12-01&rft.volume=11&rft.issue=45&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202102913&rft_dat=%3Cproquest_wiley%3E2605064830%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605064830&rft_id=info:pmid/&rfr_iscdi=true